

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEVELOPMENT OF A TAILORED METHODOLOGY
AND FORENSIC TOOLKIT FOR INDUSTRIAL
CONTROL SYSTEMS INCIDENT RESPONSE

by

Nicholas B. Carr

June 2014

Thesis Co-Advisors: Neil Rowe
 Garrett McGrath

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DEVELOPMENT OF A TAILORED METHODOLOGY AND FORENSIC
TOOLKIT FOR INDUSTRIAL CONTROL SYSTEMS INCIDENT RESPONSE

5. FUNDING NUMBERS

6. AUTHOR(S) Nicholas B. Carr

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis presents a methodology for incident response to identify anomalies and malicious adversary persistence
within the networks responsible for the reliable operation of modern society’s critical infrastructure. The chapters
provide relevant background on the historical development and function of industrial control systems (ICS) and their
unique security issues. The study of public technical data from intrusions into control systems produces a set of
known adversary tactics for incorporation into the methodology. This work further documents the development of a
repeatable technique to collect digital forensic artifacts from production control systems that is compatible with the
strict operational constraints of these critical networks. The technique is then applied with a proof-of-concept host-
and network-based toolkit for incident response that is tested against real-world data. The goal of the methodology
and the supplementary toolkit is to elicit valuable, previously-unavailable findings with which to assess the scope of
malicious intrusions into critical ICS networks.

14. SUBJECT TERMS
Industrial Control Systems, Incident Response, SCADA, Digital Forensics

15. NUMBER OF
PAGES

99

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEVELOPMENT OF A TAILORED METHODOLOGY AND FORENSIC
TOOLKIT FOR INDUSTRIAL CONTROL SYSTEMS INCIDENT RESPONSE

Nicholas B. Carr
ICS-CERT Chief Technical Analyst, Department of Homeland Security

B.S., Lehigh University, 2006 and 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
June 2014

Author: Nicholas B. Carr

Approved by: Neil Rowe
Thesis Co-Advisor

Garrett McGrath
Thesis Co-Advisor

Cynthia Irvine, Ph.D.
Chair, Department of Cyber Academic Group

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis presents a methodology for incident response to identify anomalies and

malicious adversary persistence within the networks responsible for the reliable operation

of modern society’s critical infrastructure. The chapters provide relevant background on

the historical development and function of industrial control systems (ICS) and their

unique security issues. The study of public technical data from intrusions into control

systems produces a set of known adversary tactics for incorporation into the

methodology. This work further documents the development of a repeatable technique to

collect digital forensic artifacts from production control systems that is compatible with

the strict operational constraints of these critical networks. The technique is then applied

with a proof-of-concept host- and network-based toolkit for incident response that is

tested against real-world data. The goal of the methodology and the supplementary

toolkit is to elicit valuable, previously-unavailable findings with which to assess the

scope of malicious intrusions into critical ICS networks.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. MOTIVATION ..1
C. PROBLEM STATEMENT ...2
D. APPROACH AND LIMITATIONS ...3

1. Scope..3
2. Environment and Data Availability ...3

E. THESIS ORGANIZATION AND CONTRIBUTIONS3

II. BACKGROUND ..5
A. INDUSTRIAL CONTROL SYSTEMS ...5

1. Industrial Control Systems History ...5
2. Industrial Control Network Composition ...7
3. ICS Domain Interconnection Methods ..10
4. ICS Communication Protocol Inspection ..11

B. INDUSTRIAL CONTROL SYSTEMS SECURITY13
1. Unique ICS Security Vulnerabilities ..13

a. Legacy Equipment Challenges ...13
b. Real-time Availability Requirements15
c. Problematic Patching ..15

2. Consequences of ICS Failure ..16

III. CASE STUDY TECHNICAL ANALYSIS ..19
A. CATEGORIES OF MALICIOUS ACTIVITY ...19

1. Custom Targeted Exploits ...19
2. Commodity Malware in the ICS Domain ..21
3. Unauthorized Persistent ICS Network Access24

B. KEY POINTS AND TRENDS FROM ICS INCIDENTS26

IV. METHODOLOGY ..29
A. FRAMEWORK FOR IDENTIFYING MALICIOUS ACTIVITY29

1. Framework Overview ..29
2. Framework Constraints ..30

B. TOOLKIT SELECTION ..32
1. Host-based Tools ..32
2. Network-based Tools ...34
3. Toolkit Coverage ..35

C. IDENTIFICATION OF ADVERSARY TACTICS36
1. ICS Field Device Anomalous Operations ..36
2. External Network Communication ..39
3. Registry, Startup, and Scheduled Task Persistence43
4. Process Injection and Hijacking ...45
5. File System Sabotage ...46
6. Internal Network Lateral Movement ...48

 viii

7. Portable Media Exploitation ...49
8. User Activity Abnormalities and Remote Access Abuse50

D. CONSOLIDATED TACTIC IDENTIFICATION52

V. EXPERIMENTS ..55
A. DATASETS ..55
B. INITIAL RESULTS ..55

1. Operation within Constraints ...56
2. Explanation of Host-based Toolkit Functions57
3. Concerning Findings ..60
4. Valuable Discoveries ..63

C. TOOLKIT LIMITATIONS ..67
1. Toolkit Deficiencies ..67
2. False Positive Errors ..69
3. False Negative Analysis ...70

VI. CONCLUSIONS AND FUTURE WORK ...71
A. IMPACT ...71
B. FUTURE WORK ...71
C. CONCLUDING REMARK ...73

LIST OF REFERENCES ..75

INITIAL DISTRIBUTION LIST ...83

 ix

LIST OF FIGURES

Figure 1. General ICS Network Composition Diagram, from [6]8
Figure 2. Abstracted ICS Network Diagram, from [10] ..9
Figure 3. ICS Malicious Activity Identification Methodology29
Figure 4. Comparison of IT and ICS Penetration Testing Actions, from [58]31
Figure 5. WMIC usage on Siemens SIMATIC WinCC HMI, from [62]33
Figure 6. Modbus and DNP3 Bro log fields ..34
Figure 7. Host-based passive ICS device enumeration batch script38
Figure 8. External ICS network communication identification Bro script excerpt41
Figure 9. Bro script variable translation to jVectorMap overlay data42
Figure 10. Excerpt from this thesis’ ICS process and service attribute whitelist46
Figure 11. Host-based scripts running at lowest priority ..56
Figure 12. Host-based command usage and operating system compatibility58
Figure 13. Identified communication paths from ICS network ...61
Figure 14. External connections output from this thesis’ network-based toolkit61
Figure 15. USB insertion script output on test system ..62
Figure 16. Host characteristics extracted from command-line utilities63
Figure 17. Summary of host characteristics extracted from network data65
Figure 18. ICS protocol frequency analysis in dataset ..66
Figure 19. Three command-line tool queries with mutually-exclusive results68
Figure 20. Content distribution of initial ICS-specific whitelist73

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

ACL access control list

APT advanced persistent threat

ARP address resolution protocol

ASN autonomous system number

BGP border gateway protocol

C2 command and control

CIP common industrial protocol / critical infrastructure protection

CRC cyclic redundancy check

DDoS distributed denial-of-service

DHCP dynamic host configuration protocol

DLL dynamic link library

DNS domain name system

DHS Department of Homeland Security

DNP3 distributed network protocol revision 3

Ethernet/IP Ethernet industrial protocol

FTP file transfer protocol

GE General Electric

GUI graphical user interface

HMI human-machine interface

HTTP hypertext transfer protocol

I/O input/output

ICCP inter-control center communications protocol

ICMP Internet control message protocol

ICS industrial control systems

ICS-CERT Industrial Control Systems Cyber Emergency Response Team

IDS intrusion detection system

IEEE Institute of Electrical and Electronics Engineers

IP Internet protocol

IT information technology

JSON JavaScript object notation

 xii

LAN local area network

MAC media access control

MBR master boot record

MS-DOS Microsoft Disk Operating System

NERC North American Electric Reliability Corporation

NIST National Institute of Standards and Technology

NTP network time protocol

NTSB National Transportation Safety Board

NRC Nuclear Regulatory Commission

ODVA Open DeviceNet Vendors Association

OUI organizationally unique identifier

PCAP packet capture

PLC programmable logic controller

RAT remote administration tool / remote access Trojan

RDP remote desktop protocol

ROM read-only memory

RPC remote procedure call

RTU remote terminal unit

SCADA supervisory control and data acquisition

SPAN switch port analyzer

SQL structured query language

SSH secure shell

TCP transmission control protocol

TFTP trivial file transfer protocol

TTPs tactics, techniques, and procedures

UDP user datagram protocol

USACE United States Army Corps of Engineers

USB universal serial bus

VNC virtual network computing

VPN virtual private network

WMIC Windows Management Instrumentation Command-line

 xiii

ACKNOWLEDGMENTS

My sincere gratitude goes to Dr. Irvine, Dr. Davis, and the entire Cyber Academic

Group at the Naval Postgraduate School for their guidance, encouragement, and

unrelenting pressure that made this thesis possible. To my advisors—thank you for your

patience and for spending the time to ensure that I succeeded. To my fellow colleagues

within the Department of Homeland Security’s pilot cohort for this challenging program

—a few of us made it to the finish line! To my wife and family—thank you for your

unwavering support and daily motivation through all the late nights and weekends I spent

in front of my computer… see—I really was working on something!

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Throughout history, malicious attackers have targeted critical infrastructure assets

that provide nations with essential services. Around 600 BC, Solon of Athens

contaminated the water supply for the town of Cirrha, allowing Athens to swiftly conquer

the town while the Cirrhaens were violently ill [1]. Two thousand six hundred years later,

Vitek Boden of Brisbane maliciously released thousands of gallons of raw sewage into

waterways of Maroochy Island, causing significant financial and economic damages and

forcing the residents to relocate [2], [3]. In both cases, a single malicious actor obtained

unauthorized access to critical infrastructure assets and, prior to detection, caused severe

physical consequences. Now critical infrastructure systems are more susceptible to

malicious attacks than ever before.

The reliable operation of modern society’s critical infrastructure depends on

industrial control systems (ICS), the embedded software systems that allow an operator

or device to monitor and control industrial processes. These automation systems are

ubiquitous and heterogeneous; they were designed with much implicit trust and are not

very compatible with most modern security solutions. In 2010, Stuxnet demonstrated that

traditional network protections like segmentation and intrusion detection systems (IDS)

alone are insufficient in securing control systems [4]. Insecurity of these devices can lead

to severe consequences and malicious hacking tools can be effective without much

difficulty to an attacker. To successfully leverage these tools, an adversary must access

the trusted network, leaving specific forensic artifacts and indicators of ICS malicious

activity.

B. MOTIVATION

An ICS cyber incident response process is not well developed and we lack tools

built specifically for identifying current or historical adversary presence within the

critical systems domain. Few published efforts reveal actionable technical solutions for

ICS security practitioners and none focus on reliably identifying malicious, persistent

 2

access within live data from production ICS devices. The primary motivation for this

thesis was based on technical gaps observed and reported [5] during the course of ICS

security assessments and cyber incident response.

Previous studies have outlined the need for forensic collection abilities within the

ICS environment. The Department of Homeland Security (DHS) Industrial Control

System Cyber Emergency Response Team (ICS-CERT) has concluded that traditional

forensic tools are not suitable for use in ICS networks [6]. ICS-CERT provides a high-

level strategy for forensics, makes the case for having an incident response capability,

and presents a breakdown of what is different about ICS systems. However, the

ICS-CERT best practice documents only recommend that the capability should be created

but the papers do not offer specific tools and techniques to implement incident response.

Some research has posited that live forensics on automation networks is feasible;

however no specific adversary identification techniques have been provided and

no available forensic toolkits are available that have been designed for use on ICS

networks [7].

C. PROBLEM STATEMENT

Critical infrastructure owners and operators are poorly equipped to discover and

respond to intrusions into ICS networks. Effective, compatible tools do not exist to

reliably extract the necessary technical data to analyze ICS environments with modern

incident response techniques [7]. Adversaries construct surreptitious pathways to their

target systems that provide persistent access for reconnaissance and future malicious

activity. These adversary persistence mechanisms often remain undetected for significant

periods of time. Security teams require a repeatable, tailored response methodology

employing host and network data collection and analysis techniques to identify malicious

pathways and adversary presence on ICS networks. The methodology and supplementary

toolkit within this thesis represent a step toward addressing that need.

 3

D. APPROACH AND LIMITATIONS

This thesis proposes a structured methodology to identify malicious activity by

using host-based forensics and network analysis to identify anomalous client-side attack

vectors during ICS assessments and incident response.

1. Scope

This thesis will cover analysis of control systems that respond to command-line

forensic interrogation techniques and that communicate over accepted, interpretable ICS

protocols. It will not cover embedded device firmware extraction or offline drive image

analysis within the host-based methodology. ICS field devices will be discussed, but

direct input/output (I/O) protocols and serial communication are not. This thesis also does

not cover response actions should adversary presence be detected, nor disaster recovery,

although specific case-by-case suggestions will be made.

2. Environment and Data Availability

To develop the most robust and reliable methodology, real data from ICS

networks will be used in this study. Some experimentation may be conducted through the

course of regular assessments and incident response with critical infrastructure asset-

owner approval. Multiple regulations protect disclosure of this data; anonymized data

will be used when possible, to include host-based artifacts and scrubbed ICS network

traffic. Additional experiments will be conducted within a closed network that replicates

real ICS architectures.

E. THESIS ORGANIZATION AND CONTRIBUTIONS

Chapter II provides background on ICS systems and security. Chapter III contains

technical case studies of relevant cyber incidents. Chapter IV describes a methodology

for identifying malicious activity. Chapter V presents the experiments and findings of this

study. Chapter VI provides a summary and recommends areas for future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. INDUSTRIAL CONTROL SYSTEMS

The reliable operation of modern society’s critical infrastructure depends on the

proper functioning of industrial control systems. These vital systems are widely

implemented across all infrastructure sectors to automate large industrial processes.

Components of ICS networks are designed to allow embedded logic to control a

process efficiently without constant human intervention, and thus these components have

specific roles and constraints to operate as low-level building blocks for industrial

automation.

1. Industrial Control Systems History

In 1959, a Texaco refinery in Port Arthur, Texas installed the first ICS device in

history, a Thompson Ramo Wooldridge RW-300 direct control process computer [8].

Control systems were originally designed to monitor and control industrial processes in

complete isolation, much like server mainframes were initially configured. One central

master unit provided all computing, control, and monitoring functionality, quietly

executing simple instructions or ladder logic [9]. Fault tolerance was achieved through

complete system redundancy: A duplicate ICS master unit provided all functions of the

original and monitored the primary ICS system’s operation. If the secondary system

detected a fault, it commandeered all operations. Vendors continued to follow this

mainframe architecture configuration for ICS systems through the 1960s and continuing

into the early 1980s, installing unique systems with proprietary protocols as automation

technology matured.

As personal computer (PC) costs became less prohibitive and Local Area

Network (LAN) technology was embraced for business networks in the late 1980s,

individual computers began to replace static ICS components which enabled distributed

functionality and processing across multiple control systems [9]. Data historians and

human-machine interfaces (HMIs) were implemented not as standalone systems but as

vendor-specific proprietary software on specialized personal computers. The data

 6

historian is a database that contains a history of the state of a process-control system [10].

HMIs still provide the graphical user interface (GUI) front-end for operators today and

continue to be one of the few human-to-machine touchpoints in the largely automated

control environment. These computer-based processes ran modified versions of common

operating systems and were generally vendor-provided systems, with only the vendor

able to provide upgrades and system maintenance. As a result of the newly distributed

architecture, the ICS domain no longer required full-time redundant failover systems

because the PC-based ICS systems could share the operations load of failed components.

In the late 1990s, vendors started to embrace commercial off-the-shelf computer

systems and networking hardware. These vendors began to adapt their legacy proprietary

protocols for field devices so that the systems could communicate over the Internet

protocol suite (TCP/IP). The last section of this chapter examines ICS protocols more

comprehensively. Around this time, Microsoft Windows became the operating system of

choice for HMIs, engineering workstations, and several ICS servers. Vendors used old or

modified versions of Windows that, once initially tested for compatibility with vendor

equipment, were rarely updated.

These newly networked and communicating field devices, like remote terminal

units (RTUs) and programmable logic controllers (PLCs), allowed for customized

implementations. RTUs are field devices that transmit telemetry data (information that is

collected at remote or inaccessible points) to master systems. RTUs also accept

commands from those master systems to control connected objects. PLCs are also field

devices and they execute a wide array of programmable functions such as vibration

monitoring, catalyst loading, area monitoring, and product loading/unloading. PLCs

generally execute ladder logic but now can run higher level programming languages like

C++; they offer the lowest-level code before reaching physical systems. With the

introduction of these field devices, the ICS component manufacturers enabled the system-

integrators and critical infrastructure companies to make their own modifications and

leverage their existing network infrastructure. Companies have continued to develop

networked ICS architectures that allow for streamlined performance tracking, accurate

billing, and off-site backup capabilities, despite the growing security concerns that this

 7

interconnection has introduced. This fully distributed and networked architecture is

necessary for industrial applications that require distributed monitoring points, such as

electric power transmission and distribution, oil and gas pipeline and production

operations, and water utility operations.

The centralized consolidation, processing, and management of the field devices

spawned another system term “SCADA” which is often incorrectly used to represent

the larger set of ICS components. Supervisory control and data acquisition (SCADA)

systems extend the capabilities of an automated system so that it can be monitored

and even controlled from a remote location [11]. The implementation of SCADA systems

allows for the control of industrial processes across widespread geographical

locations and facilitates the fetching and presentation of current data values to a human

operator [12].

2. Industrial Control Network Composition

All automation components that have been developed over the past fifty years

(SCADA, HMIs, RTUs, and PLCs) are implemented in some form in most ICS network

configurations. SCADA systems continue to manage very large-scale processes at

multiple sites and over large distances. HMIs are the devices which present process data

to their human operators, who control and monitor the processes. Some common HMIs in

industry include Wonderware, Siemens WinCC, Rockwell RSView, and Areva’s e-terra

[10]. RTUs interconnect all the sensors in the process and also convert those sensor

signals to digital data, which is routed to the SCADA system. PLCs are field devices that

are cheap, flexible, and highly-configurable. When combined within an industrial control

network, these devices retain features of the individual system, leading to unique,

expensive configurations that have the functionality and weaknesses of the legacy

equipment.

ICS components can be interconnected with a variety of mediums. Direct-wiring

is common for intra-facility connections. Microwave communications backbones are very

frequently used between facilities, especially in oil and natural gas pipelines, but fiber

optic inter-facility deployments are becoming more common. Both spread-spectrum and

 8

narrow-band radio are used to connect remote ICS components, however dial-up or

cellular modems continue to provide connection to these systems.

As explained above, there are many components and countless possible

configurations. Attempting to broadly capture several possible ICS network architectures

produces a complex diagram, such as Figure 1.

Figure 1. General ICS Network Composition Diagram, from [6]

While this is helpful for understanding the complexities of these systems, a more

abstracted model can be used to encapsulate the myriad of components and

configurations. Researchers introduced an abstracted ICS architecture, shown in Figure 2,

which identifies the key functions within the ICS domain [10].

 9

Figure 2. Abstracted ICS Network Diagram, from [10]

At the top right of Figure 2, the traditional IT network, which hosts the corporate

network and controls site manufacturing operations, is interconnected to the rest of the

ICS network by one of several domain-interconnection methods discussed in the next

subsection. Inside the firewall in Figure 2, the control center network houses the

supervisory services that reside on the engineering workstation, SCADA input/output

(I/O) server, and the HMI. These supervisory control systems connect using ICS

protocols over Ethernet to the field devices such as PLCs or RTUs that are often located

at distributed sites. The field devices receive commands from the supervisory systems

that instruct the field devices to subsequently control or acquire data, often over direct

I/O, from the physical ICS assets like mechanical valves, circuit breakers, voltage

regulators, digital temperature sensors, or other smart devices. The data acquired from the

physical ICS assets is transferred from the PLCs and RTUs to a central control center

where it is displayed to the operator using an HMI.

 10

3. ICS Domain Interconnection Methods

In addition to the distribution and communication paths between ICS components,

there are often additional network interconnections between the traditionally isolated ICS

domain and the corporate network. These interconnections are introduced for a variety of

reasons. The ICS network contains valuable information for business applications, such

as billing and financial data, equipment trending, and operational reports.

Interconnections to external networks may have been introduced to allow for remote

vendor support or, in the case of the inter-control center communications protocol

(ICCP), for utilities to share electrical power status for grid stability [14]. Remote access

technology allows for access to corporate software from field locations and provides

capability to manage devices that are difficult to access.

Dedicated lines are expensive, while the Internet is cheap and pervasive.

According to the National Institute of Standards and Technology (NIST), “widely

available, low-cost Internet protocol (IP) devices are now replacing proprietary solutions,

which increases the possibility of cybersecurity vulnerabilities and incidents” [15]. Low

cost and easy-to-install-and-maintain wireless connectivity has been added to field

devices, allowing for the bypass of the physical security boundary and direct connection

of field devices to the Internet.

ICS inter-domain networking can be architected using a variety of methods, such

as explicit direct connections, firewall-controlled connections, demilitarized zone (DMZ)

only connections, or data diodes. Direct connections can be hard to trace as they are

constructed by employees or vendors uniquely for the site, usually with standard

protocols such as secure shell (SSH), Telnet, file transfer protocol (FTP), virtual private

network (VPN), or with dial-up connections. This means that the direct connections may

not be known to the security team. Firewalls and access control lists (ACLs) are often

used for this interconnection and only allow certain types of connections; but the

software for them provides only limited support for ICS protocols. DMZs are common

with these interconnections; however they should not be constructed to have access to the

Internet like traditional web server DMZs. When properly implemented, isolated

networks can communicate with the DMZ but not with one another, making the DMZ

 11

good for storage servers such as databases and data historians. Data diodes enforce

unidirectional network flow, making them ideal for the ICS environment, but they do not

allow for acknowledgement or response and thus are not fully compatible with the

transmission control protocol (TCP). This means that data diodes, although difficult to

implement with many protocols, can address a limited set of inter-domain communication

needs. Regardless of interconnection type, a single control such as a DMZ, firewall, or

data diode cannot provide sufficient defense alone. Since there are no guaranteed

defenses for business networks and almost all are interconnected with ICS networks in

some way, business network incidents can intentionally or collaterally affect ICS

networks.

It is believed that, in 2013, part of the Austrian and German electric power grid

almost failed due to a single misconfigured ICS network interconnection when a status

request command packet, sent from a German gas company as a test of their new

equipment, made its way onto an Austrian energy power control and monitoring network

[16]. Once on the Austrian ICS network, the message generated thousands of reply

messages and flooded the control network. In order to resolve the self-inflicted

distributed denial-of-service (DDoS) incident prior to power outages, a portion of the

monitoring and control network had to be isolated and disconnected [16]. Thus, it is clear

that not only the interconnection medium must be understood but also the communication

protocols used by the ICS devices.

4. ICS Communication Protocol Inspection

Since the development of ICS technology was vendor-driven with a wide variety

of competing hardware, software, and capabilities, the communication technology was

similarly developed in a loose, ad-hoc fashion and lacked a central standards body. The

resulting list of communication protocols include Modbus and the distributed network

protocol revision 3 (DNP3) as well as hundreds of proprietary protocols like ANSI

X3.28, CDC Types 1 and 2, Conitel 2020/2000/3000, DCP 1, Gedac 7020, IBM 3707,

ICCP, IEC 61850, Landis & Gyr 8979, OPC, Redac 70H, Tejas 3 and 5, TRW 9550, and

 12

UCA. In total, there are estimated to be between 150 and 200 different ICS protocols

[17].

Despite the fragmented proprietary protocols and slow adoption rate of new

technology in ICS, Modbus, DNP3, and the Ethernet industrial protocol (Ethernet/IP) are

the most-used ICS protocols [18]. The Modbus messaging protocol was developed by

Modicon in 1979 to establish client-server/master-slave communication between

intelligent devices, first over serial lines then later incorporating TCP [19] (the TCP suite

are the most common protocols on the Internet). DNP3 was developed as a set of

protocols for data acquisition and control equipment communication, and in 2010 the

Institute of Electrical and Electronics Engineers (IEEE) established DNP3 as the standard

for electrical power system communications (IEEE 1815) [20]. Lastly, Ethernet/IP was

originally developed by Rockwell Automation in 2001 but is now managed by the Open

DeviceNet Vendors Association (ODVA) and is an application-layer protocol that

implements the common industrial protocol (CIP) over TCP [21].

ICS protocols have multiple telemetry schemes such as reporting by exception

(which is common in Europe), in round-robin communications, or at a time polling

interval. Most of these protocols are primitive and field devices cannot be reliably

queried to see what protocols they support. All these factors result in a highly-complex

forensic and incident response process. There is a recent trend toward routable, industry-

standard protocols that may someday replace these legacy vendor-specific proprietary

protocols [15]; however the long product life cycle and high cost for replacing ICS

components means this standardized environment is a long way off.

Despite their differences, every ICS protocol functions using master-slave

communication. The master polls for data, controls slave devices, and maintains a

repository of data. The slaves, transmitting either by polling or reporting by exception,

respond to master commands. Although all components in the ICS domain are either a

master or a slave, it is important to note that slaves can have more than one master, and a

device can be a master in one environment and a slave in another as in a tiered

architecture. This tiered structure, with a master at a remote site gathering all data for

transmission to the next hop, saves bandwidth and reduces the poll cycle. Also important

 13

to this study is that most modern protocols researched communicate, albeit via simple

wrappers and often in cleartext, using TCP/IP for subprotocols, which allows for some

level of passive network traffic parsing.

B. INDUSTRIAL CONTROL SYSTEMS SECURITY

As explained in the previous section, ICS design allows operators to interact with

the control systems at an abstract level, significantly lowering the technical expertise and

knowledge of the system required to keep the process running. The resulting state of ICS

network security is that field devices are low capability, designed for performance rather

than security, and operate on a large number of unique protocols that must all be

protected equally [17]. ICS systems were built to be highly available machines and

integrity and confidentiality were afterthoughts. That is, ICS hardware was never

designed with security in mind because they were originally deployed in isolated

environments, removed from external networks. As those systems have become

increasingly connected to the network across much of critical infrastructure, ICS systems

are more accessible and susceptible to malicious attacks. “Control systems are the

‘brains’ of the control and monitoring of the bulk electric system and other critical

infrastructures, but they were designed for functionality and performance, not security.

Most control systems assume an environment of complete and implicit trust” [23].

1. Unique ICS Security Vulnerabilities

The same control systems that replaced so many human functions, such as

flipping a switch or turning a knob based on automated thresholds, also introduced a

range of security concerns. The major vulnerabilities for ICS are in three areas: the

prevalence of legacy equipment, the requirement for real-time availability, and the

patching difficulties associated with partially or fully segmented networks.

a. Legacy Equipment Challenges

The product life cycle for ICS equipment is considerably longer than traditional

information technology (IT) systems. 20-year-old systems are common compared to 3-to-

5-year-old systems found in traditional IT networks. Due to the cost of individual

 14

components, it is not feasible to replace all insecure legacy equipment and these

challenges are common across all of critical infrastructure’s ICS deployments. Vendor

support is limited compared to traditional computers with few support styles and often a

single vendor supporting many systems. Forensic capabilities are lacking on most ICS

equipment since field devices do not generally store logs and their alarms and responses

can be suppressed.

To communicate in these mixed environments, with both legacy and modern

equipment, proprietary ICS protocols were modified to be used in IP-based networks.

The result is already weak protocols transformed into cleartext packets wrapped in

TCP/IP layers, which has only increased the pre-existing attack surface. With prevalent

cleartext communications and limited authentication or validation, ICS networks provide

ample opportunity for tampering, interception, and injection of data. With persistent

access to the ICS supervisory local area network, an adversary could conduct an

eavesdropping attack on the SCADA server’s communication with PLCs, since this is

often in cleartext and could be manipulated. This could enable injected telemetry data,

adversary knowledge of system events, enumeration of equipment, or loss of market-

relevant information. From a security perspective, most ICS traffic is accepted if

addresses match and cyclic redundancy checks (CRCs) validate.

Modern solutions like encryption are often not implemented and frequently are

not supported within legacy ICS protocols. In fact, the popular Modbus and DNP3

protocols currently do not support authentication, integrity checking, authorization, or

encryption. Third-party security solutions may not be applicable since the components

were designed to support the intended industrial process and the components may not

have enough computing resources or memory to support the addition of security

capabilities. The later that security is considered in the development of many devices, the

more difficult and expensive its security can become. This problem is expected to

continue for some time, since the long lifespan of ICS components requires that even new

equipment added to the network will have to be backwards-compatible with technology

or protocols that are 10-or-more years old [24].

 15

b. Real-time Availability Requirements

Any solution attempting to address the legacy equipment vulnerabilities must not

introduce latency or overhead into the network traffic, especially 0% downtime critical

traffic that must be operational 24 hours a day for 365 days a year.

An ICS network has minimal tolerance for communication delay or data loss. The

environment is expected to be available for extended periods of time and to meet strict

timing requirements [14]. The “flipped CIA triad” is often referenced by ICS security

experts [25]. Whereas traditional IT systems are built around confidentiality, integrity,

and availability (CIA triad), in that order, control systems are the opposite. They were

designed with the requirement that real-time availability comes first, then the integrity of

the telemetry data, and lastly confidentiality.

Real-time availability requirements were historically addressed with redundancy

[25] but full-time redundant backups are no longer the industry standard. Additionally,

increased competition within multiple critical infrastructure industries and a focus on cost

control has led to increased asset use with fewer trained staff responsible to maintain the

systems’ uptime.

With the same uptime requirements but without fully redundant backups, simple

IT functions like rebooting may not be acceptable due to process availability

requirements. The throughput and uptime requirements of these networks create an

environment where continuous reliable operations will always trump security

assessments, forensics, and incident response.

c. Problematic Patching

ICS components tend to be inadequately patched compared to IT systems. The

security afforded by any amount of ICS network segmentation is exchanged for the

ability to easily manage patches, antivirus definitions, and firmware updates. Patch

management is essential to update or repair components of systems that have identified

vulnerabilities affecting the validity and integrity of device operation. However, patching

of ICS software in critical infrastructure is “inconsistent at best and non-existent at

worst” according to NIST [15]. This is compounded by the lack of vendor support and

 16

the difficulty of upgrading within the highly volatile and sometimes unstable

environment in which control systems reside. Months of planning is often required in

order to take offline and apply patches to production ICS systems. Critical infrastructure

asset operators must weigh the planning difficulties and costs of patching ICS systems for

stable and accurate operations against the possibility of malicious tampering with that

component. 87 percent of ICS-specific vulnerabilities reported to DHS in 2013 were

exploitable remotely over the network [26]. Furthermore, even if patches are scheduled

and applied properly, they can introduce instability into the ICS domain if not thoroughly

tested.

This means that a growing number of “forever day” vulnerabilities are being

discovered in older control systems [27]. These vulnerabilities, unlike zero-day exploits

where vendors and security firms can deploy patches, exist on the legacy equipment

described above and can be targeted specifically with the knowledge that they are

weaknesses on older control systems that are not continually supported.

2. Consequences of ICS Failure

NIST states that, “ICS are typically used in industries such as electrical, water and

wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper,

food and beverage, and discrete manufacturing (e.g., automotive, aerospace, and durable

goods)” [15]. These systems directly control the processes that operate and stabilize our

critical infrastructure, including everything from dams and water treatment plants to

electric power utilities and nuclear generation plants. The failure of control systems can

directly manifest in the physical world with effects ranging from regulatory non-

compliance to severe physical disasters.

Since ICS systems are crucial to the operation of the electric grid, their failure

could lead to blackouts, economic disruption, and loss of life [15]. In the electricity

sector, instability can lead to cascading outages and loss of communication, especially

power systems with dynamic and dramatic changes in load. In that scenario, there is a

complex, multi-step restoration process. First, critical loads like hospitals must have

power restored, then generation facilities, transmission lines, distribution feeders, and

 17

lastly corporate and residential power service. In the oil and natural gas industry, system

failure can result in fuel shortages with economic impacts and even explosions, causing

loss of human life or environmental catastrophes. In the water sector, improper treatment

or contamination of water, release of waste, or reduced pressure to emergency systems

like fire hydrants are possible consequences. Chemical ICS systems can be tampered with

resulting in chemical formula manipulation. Even the transportation sector relies heavily

on ICS networks for control of mass transit, and their failure could lead to train

derailments or crashes.

The hardware and software for ICS components is almost exclusively foreign-

owned [29] and there are a limited number of critical asset manufacturers, with long lead

times required for high-value components. For example, it can take six months to receive

a replacement for certain transformers. The United States’ critical infrastructure is

often referred to as a “system of systems” because of the interdependencies that exist

between its various industrial sectors as well as interconnections between business

partners [30], [31].

The failures of these systems can be very real. In June 1999, the Olympic Pipeline

Company’s pipeline ruptured causing massive physical consequences, including three

deaths and multiple additional injuries including hydrocarbon inhalation poisoning [32].

The National Transportation Safety Board (NTSB) concluded that the SCADA services

failed on its single Ethernet backbone and event logs indicated that the SCADA system

failed to execute the command, partially as a result of database development work being

done on the SCADA system while it was being used to operate the pipeline, which led to

the systems non-responsiveness during critical operations [32]. Had the supervisory ICS

components remained responsive to the commands of the Olympic controllers, the

controller operating the accident would have been able to initiate actions that would have

prevented the pressure increase that ruptured the pipeline.

In August 2003, the northeastern region of the United States and Canada

experienced a blackout that affected 50 million people due to cascading failures of

electrical grid operation. While the root cause of the blackout was tree limbs contacting

transmission wires, it was later determined that a previously unknown software bug in

 18

GE Energy’s XA/21 system at FirstEnergy Corporation in Akron, Ohio was partially

responsible for the initial breakdown when it silently failed and did not trigger the alarm

system [33].

In March 2008, an engineer at the Hatch nuclear power plant installed a software

update on a computer operating within the plant’s business network. When that corporate

network computer rebooted, it reset the data on the control system, causing safety system

to misinterpret the lack of data as a drop in coolant water reservoirs and a plant shutdown

automatically began [34]. The nuclear plant shutdown took 48 hours to recover.

 19

III. CASE STUDY TECHNICAL ANALYSIS

A. CATEGORIES OF MALICIOUS ACTIVITY

To identify malicious activity in the ICS domain, it is necessary to review case

studies of previous intrusions. Due to the limited availability of public data on past ICS

incidents, this thesis categorizes similar events together to isolate behavioral trends. Past

malicious activity related to control systems can be assigned to one of three categories:

custom targeted exploits, commodity malware in the control environment, and

unauthorized persistent ICS network access.

1. Custom Targeted Exploits

This category of malicious activity includes nation-state-sponsored hacking or

other highly-targeted and well-funded intrusions, often using custom exploits. These

attacks have targeted PLCs and other ICS field devices and can involve firmware

tampering or exploiting other device vulnerabilities. Targeted attacks such as those

sponsored by nation states tend to use zero-day exploits that have not been publicly

disclosed or patched by the vendor. Historical examples of targeted critical infrastructure

attacks include the proof-of-concept Aurora exploit, Shamoon, and most notably Stuxnet.

In early 2003, a marine terminal in Venezuela was the target of attempted

sabotage. The technical details have not been shared publicly, but it is believed that a

team of hackers obtained access to the SCADA network of the oil tanker loading

machinery and overwrote PLCs with an empty program module [16]. The result was an

eight hour halt of the oil tanker loading process until the backup ladder logic was

reinstalled on the PLCs.

In September 2007, DHS demonstrated the feasibility of customized targeted

attacks on ICS systems with the Aurora exploit [35]. Aurora damaged rotating electrical

equipment with multiple torque shocks by opening a breaker then closing a generator

back into the power system out of phase [36]. This electrical attack could be conducted

locally or remotely using unauthorized access to conduct man-in-the-middle or address

resolution protocol (ARP) cache poisoning to inject breaker trip commands. Although

 20

several mitigation techniques currently exist [37], Aurora proved empirically the ability

to attack a physical device via the Internet and underscored the critical need to identify

malicious access to ICS assets.

In June 2010, a piece of malware was uncovered by researchers from Belorussian

security firm VirusBlokAda that would eventually become known as the Stuxnet worm.

Stuxnet exploited four zero-day vulnerabilities and used two compromised digital

certificates. The malware did not target the PLCs and field devices directly; it exploited

high-level application software on the controlling Windows-based systems with the

ability to program PLCs [4]. The PLC rootkit code resided on and was executed on the

engineering workstation and not the PLC itself [38]. The worm affected Windows 2000,

Windows XP, Windows Server 2003, Windows Vista, and Windows 7 workstations. In

addition to probable initial universal serial bus (USB) device infection, Stuxnet spread

over the LAN using network shares [39]. Researchers have concluded that Stuxnet code

remained idle for an average of 12.8 days after initial infection before executing, then

persisted quietly for 26.6 days between subsequent executions [4].

Although data deletion attacks have existed since at least 1998, when the CIH

virus was created to overwrite a portion of the hard disk as well as the computer’s flash

read-only memory (ROM) [40], the recent resurgence of these attacks has renewed

concern over this style of attack. In August 2012, the Shamoon data deletion attack

targeted the world’s largest oil company, Saudi Aramco. ICS-CERT claims that a

destructive attack similar to Shamoon could just as easily have occurred on ICS networks

[41] and some reports state that data deletion attacks were executed against Iran’s Oil

Ministry control systems in Kharg Island around the same timeframe as the Saudi

Aramco sabotage [42]. Shamoon executes a copy of itself as a scheduled job, entrenches

itself as a service, drops a malicious driver which is loaded and executed to obtain disk

access, then overwrites disk data starting with user data then system data and eventually

the system’s master boot record (MBR). The cyber attack effectively wiped 30,000

computers from Aramco, disabled some of its internal networks for weeks, and was soon

spread to other oil and gas firms, such as RasGas [43].

 21

In 2014, the first publicly-released prototype PLC rootkit with multiple payloads

that can remain embedded in the device’s firmware appeared [44]. The rootkit conducts

denial of service attacks and overwrites flash memory to make the attack persistent

through device reboots. Planned future efforts by the researchers include the ability to

distribute the malicious rootkit to other PLCs using available communication channels

and adding telemetry data tampering functionality to the rootkit [44].

2. Commodity Malware in the ICS Domain

Malicious activity in the ICS domain can include the intentional or accidental use

or re-purposing of known malicious software such as crimeware or banking Trojans.

Even though these exploits and malicious software were not written to target ICS

systems, commodity malware from traditional systems introduces instability into an

already volatile ICS domain, with unknown effects on the operation cyber-physical

systems. Because antivirus signatures exist for much broad-audience malware, the

detection rate is high and there is more publicly available technical information than for

the other categories. Often, regulated critical infrastructure entities must report these

incidents and thus more are disclosed. We describe some representative examples.

In January 2003, the Nuclear Regulatory Commission (NRC) confirmed that the

Microsoft Structured Query Language (SQL) Server worm known as the Slammer worm

infected the Davis-Besse nuclear power plant in Oak Harbor, Ohio. The worm spread

indiscriminately and infected one of the plant’s contractor computers, which

consequently bridged a fiber optic connection from their computer to the internal

SCADA network of the plant [45], bypassing a firewall that was configured to block the

specific user datagram protocol (UDP) port used for propagation. The worm infected an

unpatched server in the ICS network and caused enough network congestion to shut

down the Safety Parameter Display System for nearly five hours. Reporting indicates that

the Slammer worm also impacted other electricity sector systems [45].

In August 2003, a variant of the Sobig worm was introduced into the CSX

Railway headquarters in Jacksonville, Florida. This commodity malware installed

applications and created backdoors while continuing to spread by infecting e-mail

 22

attachments. Although not specifically designed for or targeting the railway systems, the

worm propagated into the control center causing loss of signaling, dispatch, and other

related systems. Reporting indicates that Amtrak trains in the area were also affected by

the malware’s introduction into CSX Railway’s systems. The end result was multiple

train delays and expensive clean-up costs.

In August 2005, thirteen United States automobile manufacturing plants operated

by Daimler Chrysler were shut down when the Zotob worm was introduced into the

control network. This commodity malware was introduced to the ICS environment

despite the existence of professionally-installed firewalls and studies of the incident

concluded that a secondary pathway bridged network zones [46]. The plants’ ICS

networks remained offline for almost an hour and additional plants in Illinois, Indiana,

Wisconsin, Ohio, Delaware, and Michigan were also forced down. The outage forced

approximately 50,000 assembly line workers to cease work and cost Daimler Chrysler an

estimated $14 million in losses [46].

In October 2006, an attacker penetrated the network at a Harrisburg,

Pennsylvania, water filtering facility [47]. The hacker compromised an employee’s

business laptop over the Internet and then introduced malware into the water facility’s

SCADA system using the compromised laptop’s trusted remote access mechanism. The

intrusion was discovered prior to damage occurring and thus the systems remained stable

and operating.

In August 2008, viruses intended to steal passwords and send them to a remote

server jumped a significant physical air gap and infected laptops inside the International

Space Station. Although the impacts were minimal, the virus did make it onto more than

one laptop, suggesting that was spread using internal networking or portable media.

In early 2012, ICS-CERT provided on-site support at a power generation facility

where common malware had been discovered in the ICS environment and was likely

introduced accidentally by an employee’s use of a USB drive to back up control

configurations. Several machines were likely affected by the incident, including two

Windows-based engineering workstations, both critical to the operation of the control

 23

environment. According to ICS-CERT, “these workstations had no backups and an

ineffective or failed cleanup would have significantly impaired their operations” [48].

In October 2012, ICS-CERT responded to an incident in which the Mariposa

scamming botnet was discovered on ten computers within a power company’s turbine-

control system. This incident was caused when a technician used a USB drive to upload

software updates during a scheduled equipment upgrade outage. Quarantine and

restoration procedures at the company resulted in downtime for the impacted systems and

a delay of the plant restart for three weeks [48].

 In January 2014, malicious actors modified the widely-available “Gh0st RAT”

Trojan and infected the Monju fast-breed nuclear reactor in Tsuruga, Fukui Prefecture

[49]. RAT stands for remote administration tool and also remote access Trojan.

Commodity RATs like Gh0st RAT and Shady RAT have been used for intrusions into

critical infrastructure networks since at least 2009 [42]. Using a webshell hidden within

an image on a popular media player’s update server, Gh0st RAT was downloaded to one

of the eight computers in the Monju reactor’s control room [50]. Analysis of the incident

has revealed that the webshell had been in place since 2011 and the modified Gh0st RAT

malware was compiled in 2013, indicating that the adversary was patient and planned out

the intrusion. The webshell redirected users at the Monju plant to another web server

where a self-extracting compressed archive that contained multiple malicious modules

was downloaded and various persistence mechanisms were established. Outbound

command and control traffic was eventually manually observed by on-duty personnel

while filing paperwork on the system, weeks after initial infection. The harvesting

module of this malware allowed the compromised machine to be accessed more than

thirty times in a five-day period and resulted in the pilfering of over 42,000 e-mails,

meeting materials, Monju re-organization documents, and staff training records stored on

the machine [49]. This intrusion only added to the troubled history of the Monju nuclear

reactor and, following the intrusion, the plant was selected for decommissioning.

 24

3. Unauthorized Persistent ICS Network Access

A third category of ICS incident refers to any unauthorized persistent access on

control center systems or field devices from another network such as from the corporate

network or the Internet. This is generally accomplished by subverting access controls for

built-in remote ICS network access solutions, for which malicious use is difficult to

detect. Interestingly, this category is closest to the official DHS definition of an ICS

threat, which is “persons who attempt unauthorized access to a control system device

and/or network using a data communications pathway, either trusted internal users or

remote exploitation by persons unknown via the Internet” [51]. In fact, between 2001 and

2006, 70% of security incidents involving ICS networks originated outside of the

network [52].

In 1992, a fired employee hacked into Chevron’s systems in New York and San

José, California, reconfiguring the emergency alert network so that it would crash [53].

The intrusion was not discovered until an emergency occurred at a Chevron refinery in

Richmond, California and the system could not be used to notify the adjacent community

of the release of a noxious substance. Network configuration details have not been made

publicly available to understand if and how the emergency alert network was

interconnected with ICS devices, but the critical alert system was intended to cover

twenty-two states and several regions of Canada. The unauthorized tampering resulted in

a ten-hour system outage [53].

In March 1997, a Boston teenager connected his personal computer without

authorization to a dial-up loop carrier system servicing the Worcester airport and

subsequently sent a series of commands that disabled it [54]. The teenager’s actions

altered the integrity of the data and severed communication links to an airport, forcing air

traffic controllers to rely on manual overrides and backup systems for six hours.

Additionally, the unauthorized access resulted in the disabling of phone service to over

600 homes in the area and affected the local weather service and fire department. Most

notably, the teenager’s access temporarily disabled the radio transmitter that allowed

aircraft to send an electronic signal to activate runway lights on approach. Information

from the criminal case indicates that the loop carrier system operated by the telephone

 25

company was accessible via modem to allow technicians to quickly change and repair

service to customers from remote computers.

In April 2000, Vitek Boden wirelessly operated sewage treatment equipment at

the Maroochy Waste Water facility in Queensland, Australia using a laptop in his car [2].

Over the course of three months, Vitek Boden successfully intruded into the SCADA

system 46 times, falsifying his network address, sending false data and instructions, and

disabling alarms that released thousands of gallons of raw sewage into rivers, parks, and

tourist destinations [2]. The series of unauthorized accesses resulted in residents

relocating due to the foul smell, the discoloration of the local waterways, over $1 million

in estimated costs, and substantial loss of marine life [3]. During the subsequent

investigation, it was discovered that Boden previously worked as an engineer at the

vendor supplying Maroochy’s ICS components and he was attempting to obtain a

consulting job to solve the problems he was creating [2].

In August 2006, two Los Angeles city employees compromised the network that

controlled the city’s traffic light system. [55]. The pair disrupted traffic signals on the

signal control boxes at four critical intersections, resulting in significant backups and

delays. This particular intrusion was launched prior to a labor protest by city employees.

In 2009, a 28-year-old disgruntled former IT contractor for Pacific Energy

Resources remotely hacked into computerized controls that detected leaks on off-shore

oil platforms off the coast of California [56]. Mario Azar’s unauthorized access resulted

in the crash of telemetry systems and operational data unavailability. The systems were

disabled for almost two months before the intrusion was identified. This ICS safety-

component failure caused thousands of dollars of damages for Pacific Energy Resources

but did not trigger any leaks or physical consequences.

In November 2011, a hacker who called himself “Pr0f” demonstrated that by

using the Internet-connected device enumeration tool Shodan, he could access HMIs

within a South Houston water utility’s ICS network [5]. Pr0f found that the water utility

was running the Windows-based Siemens Simatic HMI software, a web-based dashboard

for remote access to their SCADA systems, and was connected directly to the Internet

 26

with only a simple three-character password for protection. According to ICS-CERT, this

is one of countless successful unauthorized ICS network intrusions as a result of the

exponential growth of Internet-connected ICS systems [48].

In May 2013, United States intelligence agencies traced an intrusion into the

United States Army Corps of Engineers (USACE) National Inventory of Dams (NID) to

a suspicious IP address [57]. The database contained sensitive details on vulnerabilities of

the 8,100 major dams across the United States. Although technical details are not

available to determine the interconnection between this database and the ICS network,

the malicious user did maintain persistent access to the NID database for at least three

months [57].

In May 2014, ICS-CERT reported that a sophisticated threat actor accessed a

company’s SCADA server that operated mechanical equipment. The SCADA server was

directly connected to the Internet via a cellular data connection with no firewall or

authentication controls in place. The intruder maintained access to the system over an

extended period of time and connected over hypertext transfer protocol (HTTP) and

SCADA-specific protocols, although no man-in-the-middle injection or system

manipulation was observed [26]. In the same May 2014 release, ICS-CERT also

disclosed that a public utility was compromised by a malicious group that gained

unauthorized access to the utility’s control systems. The ICS network was configured for

remote access capabilities over the Internet with password-based authentication which the

attackers were able to crack with brute-forcing [26]. The public release did not include

any additional technical data or statements regarding impacts to the utility’s operations,

but the ICS-CERT report notes that the system owners were previously unaware of the

insecure configuration and that the targeted systems were likely subject to prior intrusion

activity.

B. KEY POINTS AND TRENDS FROM ICS INCIDENTS

The studied intrusions often started within the business network, or the business

network was compromised as a reconnaissance point for follow-up intrusions into the

ICS networks. By compromising the underlying operating systems of the workstations

 27

hosting ICS software, adversaries were able to abuse trust relationships between those

compromised systems’ software applications and ICS hardware. Any action available to

an ICS system’s legitimate root-level Linux user or more commonly a system-level

Windows user may also be performed by an adversary without the use of any ICS-

specific knowledge or exploit tools.

In all studied incidents involving intentional malicious impacts to ICS systems,

the adversary maintained a presence on the target system and had a communication

method to communicate orders. In rare cases, malicious access was achieved directly to

the field devices over radio or other connection method to the endpoints, however the

majority of incidents involved the compromise of Windows-based supervisory

workstations that monitor and control field devices. Targeted attacks and non-targeted

commodity malware events also incorporated early rogue connection to the ICS network

and thus unauthorized access is a prerequisite for all incident categories. Focused efforts

to identify attempted or achieved unauthorized ICS network access may provide valuable

early indication of many types of malicious activity.

Because availability requirements often prohibit the restarting of supervisory ICS

machines, less sophisticated methods were required to maintain access to the target

networks. Unauthorized access generally persisted for a significant amount of time in

these case studies allowing attack planning and reconnaissance. The relatively simple

persistent access methods and lengthy undetected malicious access to ICS networks were

not reliably identified, according to several post-incident analyses, in part due to the

constraints of auditing these systems and concerns of introducing instability into the

environment.

Technical indicators of anomalous access and ICS network compromise have

been extracted from these incidents’ publicly available technical reports. The incidents

used malicious methods to target ICS field devices as well as more traditional intrusion

hacking techniques like establishing external command and control, scheduling tasks and

modifying the registry to survive reboots, tampering with processes and services,

implanting files for future action, laterally moving within the network, exploiting

portable media devices, and abusing trusted channels to obtain and maintain an attack

 28

position on critical-infrastructure systems. The spectrum of methods was similar to that

of attacks on computer systems and networks in general therefore existing effective

identification techniques should be carefully adapted for use in ICS environments.

 29

IV. METHODOLOGY

A. FRAMEWORK FOR IDENTIFYING MALICIOUS ACTIVITY

The design of a technique to identify malicious ICS activity requires careful

planning to obtain unique ICS data sources and collect and analyze that data under the

strict operational constraints of critical networks.

1. Framework Overview

The proposed malicious activity identification methodology consists of collection,

analysis, and decision components for host-based and network-based ICS artifacts

(Figure 3). The framework is modeled after modern intrusion detection techniques

employed in traditional networks [13]; however, these solutions are rarely deployed

correctly for ICS networks at critical infrastructure sites [15] and most lack ICS protocol

support as well as the signatures and behavioral-anomaly data necessary to identify ICS

attacker tactics [7]. The purpose of this technique is to quickly analyze an ICS

environment’s systems and their communications, attempt to interpret abnormalities with

a minimal required baseline, and isolate possibly malicious activity and pathways on

critical networks in support of security assessments and cyber incident response.

Figure 3. ICS Malicious Activity Identification Methodology

ICS Network Traffic

• Protocol
convention
anomalies

• Malicious behavior
indicators

Host‐based Artifacts

• Whitelist/filter
regularities

• Identify blacklisted
artifacts

• Collect greylist of
possible malicious
pathways

Malicious Activity
Identification

•Network and host
artifact analyzers

•Anomaly decision
algorithm

•Reporting framework

 30

Although the goal is the creation of a toolkit that executes this methodology with

reliable high-confidence output, the approach may need to be conducted manually at first

and continually refined with automation in mind.

2. Framework Constraints

ICS networks require that specific technical constraints be understood and

adhered to for both host-based and network-based tools.

Host-based tools are limited to those installed and already available on legacy

operating systems. There exists no centralized view of system security status to draw data

from, and field devices do not always store logs. Any security-monitoring commands

executed on these systems should be run at the lowest priority level to not interfere with

critical processes. Furthermore, there are temporal challenges with ICS forensic data

because process and state information is often overwritten at a rate that makes

meaningful collection unviable or impossible [6]. The unique configuration and

availability requirements of these systems that were explored in previous chapters

necessitate the adaptation of all host-based techniques for compatibility and the thorough

testing of all commands to ensure critical processes will not be interrupted.

Network-based techniques are constrained by the instability introduced by active

tools in the environment. Port scanning and automated device interrogation techniques

can crash ICS hardware by scanning too fast or by sending null or malformed packets.

With modern SCADA services using internal Web servers, HTTP GET and POST

requests can cause actual physical actions, so even Web-based automated tools should

not be used actively on ICS networks. Industry best practices recommend, and a few

examples in the next section highlight, the importance of remaining entirely passive for

network traffic analysis. That analysis must also include the highly specialized and often

proprietary ICS communication protocols. Although minimal “noise” (irrelevant traffic)

should exist on ICS networks, data volume is an issue because the amount of real-time

telemetry data and otherwise unrelated traffic can drown out possibly malicious packets.

Furthermore, ICS domain interconnection methods and some regulator restrictions limit

the ability to tap critical networks at multiple locations. For these experiments, passive

 31

network traffic captures were examined that were collected using a high-capacity switch

port analyzer (SPAN) port on a router or switch, a method that should be usable on any

ICS network.

Several traditional penetration testing techniques can be translated for use on ICS

networks as shown in Figure 4. For example, instead of running a network port scan that

sends packets intended to elicit device information that could trigger unexpected results,

a penetration tester should verify open ports on each host in the environment without

generating network traffic. This thesis explores eliciting considerably more detailed

incident response and forensic data from these systems while following similar

constraints.

Figure 4. Comparison of IT and ICS Penetration Testing Actions, from [58]

Accounts exist of security researchers ignoring these constraints. For example, a

ping sweep was performed on an active ICS network that controlled 9-foot robotic arms

and a controller for an arm that was in standby mode received the ping sweep and

abruptly swung around 180 degrees, luckily missing the person nearby [58]. In another

instance, a ping sweep was performed to enumerate all hosts on an ICS network and it

 32

caused an integrated circuit fabrication system to fail, destroying wafers worth $50,000

[58]. In a third instance, a penetration test at a gas utility locked up the SCADA system

and the utility was unable to send gas through its pipelines, causing a loss of service to

customers, for four hours [58]. Lastly, in August 2006, operators at Browns Ferry

Nuclear plant had misconfigured products from two different vendors, which resulted in

excessive traffic on the control network. This excessive network traffic resulted in a high-

power, low-flow condition where the recirculating water system could not be properly

cooled [59]. This event, which took the plant offline for two days and cost nearly

$600,000 in revenue [59], demonstrated the fragility of these networks when exposed to

unexpectedly heavy network traffic. These examples are proof of the complex

requirements of any security assessment or forensic action on conducted on production

ICS networks.

B. TOOLKIT SELECTION

An ideal toolkit requires the hand-selection of the most compatible host- and

network-based tools capable of collecting and analyzing malicious activity while still

providing ample ICS network coverage.

1. Host-based Tools

To aid stability of hosts, an implementation should focus on agentless built-in

commands that generate minimal network traffic. Popular toolkits such as Microsoft’s

Sysinternals require detailed configuration and have not been thoroughly-tested on ICS

systems, so they are not ideal for widely-applicable solutions. For host-based querying

for Windows artifacts, only built-in command-line utilities should be used, with an

emphasis on the Windows Management Instrumentation Command-line (WMIC) tool.

Special care should be taken to ensure that the toolkit only attempts to query using

command-line utilities that exist on that hardware’s possibly-modified operating system.

When possible, scripts should be written for the legacy Microsoft Disk Operating System

(MS-DOS) 16-bit command.com processor that preceded the 32- and 64-bit cmd.exe

found on Windows.

 33

The implementation of these scripts will be compliant with North American

Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP)

standards’ scanning policies [60], which ensures that the toolkit can be used at not only

electrical utilities but at other critical infrastructure sites with ICS systems that are

subjected to the same scanning limitations. The tools are available on several versions of

Windows operating systems, including most of those found within ICS environments, as

illustrated within Siemens Automation documentation for the use of WMIC to

troubleshoot system patching (Figure 5), representing a small subset of this thesis’

planned usage. “Product work-around” documentation from General Electric (GE) shows

that WMIC is also supported on a range of GE’s platforms including GE’s Proficy data

historian platform and GE’s Cimplicity HMI platform [61]. References to WMIC can

be found buried within most major manufacturer’s supervisory ICS system’s

troubleshooting documentation. While no documentation exists on the use of these tools

for forensics or live response on control systems, tailoring ICS-compliant queries can

identify unauthorized access based on real-world malicious ICS activity.

Figure 5. WMIC usage on Siemens SIMATIC WinCC HMI, from [62]

These tools can run at user privileges but offer the most functionality when run as

an administrator. For the research and testing purposes, a new shared administrator

account with strong authentication was created on every test workstation to centrally

query the hosts. Documented best practices recommend banner grabbing as a safe activity

[58] and this WMIC node querying method uses similarly minimal network bandwidth.

For critical real-world networks, the toolkit can run the commands locally with no

network traffic with the manual export of results to be collated on a separate closed

network.

 34

2. Network-based Tools

The experiments used the Bro platform for network-based analysis [75]. It is an

open-source network solution composed of signature detection, anomaly detection, and a

programming language designed to work with network traffic. The signature detection

generates logs for which a protocol analyzer abstracts details in real-time. Alerts can be

generated based on pre-configured signature and anomaly notification rules. The

programming language defines the actions the platform takes based on logic and

structured programming. Fortuitously, the Bro network programming language was

updated in November 2013 to support protocol parsing of the two most popular ICS

protocols, Modbus and DNP3. Bro can parse and analyze network traffic and analysis can

be automated through the creation of customized scripts to identify malicious ICS

network activity.

Figure 6 lists the default protocol fields parsed by Bro for Modbus and DNP3.

Bro’s ability to extract function codes from ICS protocol messages can prove valuable in

comparing network traffic against ICS protocol conventions. The Modbus and DNP3

analyzers process significantly more data than that provided in Figure 6, so custom

scripts can be written to manipulate register addresses, values, and additional payload

data. The created toolkit should scale in function as future Bro ICS protocol analyzers are

developed.

ICS Protocol Data
Data
Type

Modbus
Field

DNP3
Field

Message timestamp time ts ts
Connection unique ID string uid uid
Connection orig&resp host&port record id id

Message function code string
fc_request
fc_reply

Message failure exception code string exception
Response internal identification # count iin

Figure 6. Modbus and DNP3 Bro log fields

 35

Additionally, several open-source programming libraries such as jQuery and

jVectorMap can be used to aid in reporting and visual effects for the network-based

analysis toolkit.

3. Toolkit Coverage

Because the most skilled adversaries strive to maintain a minimal footprint, full

inspection of ICS host and network elements is desirable but time and processing

constraints, as well as the devices’ operational limitations, make it infeasible at this time.

Host-based and network-based tools can provide ample coverage of most ICS networks,

while respecting constraints of device operation and real-time availability. Sufficient

host-based sampling has been achieved and full population network-based data can be

processed with this method, limited only by the ICS network operator’s ability to collect

and store all traffic.

Host-based tools should be selected to provide very high data-driven, non-

probability judgment and convenience sampling rates. Host-based tools should be used

locally on compatible hosts with minimal network traffic generated. Special logic should

be included in the host-based scripts to ensure the stability and compatibility with various

legacy versions of the Microsoft Windows OS. When possible, all scripts should be

generated with MS-DOS and Windows 4.x commands, maximizing ICS host coverage.

The network-based analysis should be completely passive by design to not

interfere with reliable process control. Analysis should cover the spectrum of systems

communicating over TCP, UDP, and Internet control message protocol (ICMP) protocols

on the ICS network, regardless of operating system. Specifically, the network toolkit

should cover traffic for all hardware including field devices that communicate over

Modbus TCP and DNP3, widely considered the two most-implemented ICS protocols in

industry [18]. Support for more ICS network protocols can be extended as time permits.

 36

C. IDENTIFICATION OF ADVERSARY TACTICS

This section details proposed technical identification techniques for adversary

tactics as observed in the malicious ICS activity case studies. When applicable, host and

network script excerpts are provided to illustrate usage.

1. ICS Field Device Anomalous Operations

In several cases examined, the only indication of malicious access was the

anomalous operation of the ICS field devices. Stuxnet resided on the WinCC HMI and,

using a known hardcoded password, modified rotating motor spinning frequencies in

Siemens S7-315 programmable logic controllers and valve settings in S7-417s. This

suggests that cleartext protocol data should be examined and ICS protocol datagrams

should be inspected for known default passwords and other vulnerabilities. Obtaining and

validating upper and lower field device register-boundary values against site-specific

expectations and equipment-tolerance values may help identify overclocked or

maliciously manipulated devices. ICS protocol operations should also be used to

automatically create a catalog of devices, such as Modbus function code 0x11 and 0x2B

that query for device details; responses to these packets can be passively inspected for

field device characteristics. To extract high and low values, the maximum and minimum

values for each device register should be stored and checked upon single register request,

single register response, and multiple register request events. One of this study’s Bro

scripts can access and catalog these register-boundary values from both historical and

real-time network traffic. The script should capture register-boundary values from

replayed historical samples then create expected register limits with which to monitor

real-time traffic, which requires fewer calculations and events. Because the ICS network

protocol data is passively ingested on network infrastructure SPAN ports, and Bro is

designed to distribute and manage loads [75], no network latency will be introduced

when running any network-based scripts on historical or real-time traffic. If too much

network traffic is aggregated, packets will merely be dropped on the monitored SPAN

port; both ICS process control and network infrastructure operations will continue

without degraded or disrupted performance.

 37

The analysis of ICS field device register-value ranges requires additional

information such as the make and model of equipment and what process it may be

controlling. Organizationally unique identifier (OUI) bits should be extracted from media

access control (MAC) addresses to assist in fingerprinting devices for both overall

awareness and for verification of specific ICS hardware limits. A repository of ICS-

specific OUI vendor information and possible field device function has been researched

and created for this thesis for offline component identification. Unfortunately, Bro

abstracts network traffic at an early phase of analysis and does not currently allow the

extraction of MAC addresses from ICS protocol communication.

To assist, dynamic host configuration protocol (DHCP) traffic within the ICS

network traffic should be examined for physical addresses, modifying an existing Bro

policy and further extending it with ARP, DNP3, and Modbus protocol analysis.

Additionally, the host-based scripts should query each system to extract MAC addresses

from their local ARP tables for devices with which they have communicated, and from

any in-range wireless infrastructure (Figure 7). This method should assist in monitoring

for ARP poisoning as well. Dual-homed devices, those systems that have multiple

network interface cards, are attractive pivoting targets for malicious attackers, so any

MAC address with multiple IP addresses should also be identified.

 38

Figure 7. Host-based passive ICS device enumeration batch script

Since ICS traffic often should be deterministic (the operation of a device should

be predictable since critical processes rely on predictable outputs for given inputs) the

network traffic can be compared against ICS traffic conventions to isolate tampering or

anomalous behavior. This provides a stronger indication of malicious activity than on

traditional computer systems. One such convention is the hierarchical communication

where devices communicate one-to-many or master-to-slave. Master and slave roles can

be easily extracted for IP-based protocols because the source and destination addresses

for a specific message type imply its role. Communication channels are defined by device

function so an HMI should only talk to a PLC, RTU or SCADA I/O server and an RTU

should probably not be sent non-ICS protocol traffic; these should be constant because

devices are rarely added or removed from the network. Another convention is that ICS

field device communication is consistent and so, where on traditional IT networks the

packet timing is influenced by human interaction, the ICS protocol traffic generally

occurs on set polling intervals.

 39

Additional logic should be added into the Bro scripts for ICS field devices to

check for suspicious functions and operations that require an explicit interactive

command or reprogramming. Engineers and operators, when presented with this data,

would know instantly if it was a command that they issued or if it was a possible

unauthorized injected command. The Bro script should include specific verbiage

detailing the potential security concern of the ICS field device command transmitted. For

Modbus, function code 0x7D is issued to initiate firmware replacement. DNP3 code

0x1B is issued to delete a file and codes 0x0D and 0x0E are issued to restart a device.

Those commands would be instantly verifiable if detected in live ICS traffic. Less critical

alerts should also be included in the scripts but require operator analysis to determine if

they are malicious or if the ICS network is misconfigured. For instance, a Modbus slave’s

exception code of 0x03 means an illegal data value was received. Since we have

established that Modbus is hardware-agnostic and not aware of device register limits, this

exception means that the structure of a query was unexpected. Modbus exception code

0x0B indicates that a target device failed to respond or may not be present on the

network. DNP3 uses code 0x21 for an authentication error and 0x82 for an unsolicited

response, both of which should be extracted by the created scripts, but it will require an

operator to discern whether the presence of the codes indicates malicious activity or

device misconfigurations.

Comparing observed ICS communication against protocol conventions like these

should allow the identification of malicious persistence without the need for an anomaly-

based learning period.

2. External Network Communication

The majority of cases studied included some form of malicious communication to

external networks. The high signal-to-noise ratio within IP-based ICS networks should

make the identification of malicious external communication significantly easier when

compared to traditional enterprise networks.

All versions of the Mariposa malware use custom UDP datagrams for

communication, and infected systems may beacon frequently and send encrypted

 40

instructions and data across a variety of UDP ports. Hardcoded domain names are used in

most variants as well. The Monju incident’s malware redirected from the compromised

streaming media service’s website to another malicious domain and used command and

control traffic over TCP port 443. The connections were established with malicious

server testqeasd.tk, so domain name system (DNS) lookups over TCP port 53 would be

observed [50]. DNS cache, cookies, and the hosts file can be examined for previous

outbound attempts and may help identify planned routes or dormant malware. Web

browsers also store typed uniform resource locators (URLs) in various forensic locations,

such as in HKCU\SOFTWARE\Microsoft\Internet Explorer\TypedURLs for Internet

Explorer.

Since this thesis has argued that ICS networks should not connect to the Internet

directly, all attempted or successful connections to external IP space may be of concern,

unlike business networks. For instance, both a half-open TCP handshake and a

connection that has been rejected by an external IP issuing a reset packet to deny it would

not be considered a connection in most traditional networks. Any external connection

attempts using ICS protocols are of major concern and they should be prioritized for the

user of the toolkit to review.

Figure 8 provides an excerpt from this thesis’ Bro script to categorize potentially

malicious connections outside of the ICS network. The first function abstracts and

simplifies the state of every TCP and UDP connection based on the status of its three-

way TCP handshake. Selecting an event-based trigger that captures both attempted and

successful connections in network traffic can be difficult; however, the second function

shown in Figure 8 should trigger when a connection’s internal state is about to be

removed from memory. Every TCP and UDP unique 4-tuple socket pair should reliably

generate an event at which time the network-based toolkit should apply logic to filter out

the original, meaningful external connections and their connection statuses. The bottom

of Figure 8 also displays a portion of the robust ICS port and protocol pairing that should

be matched to newly-identified external connections. This ICS protocol tagging should

provide helpful context for determining the security risk of a particular connection since a

 41

previously-unknown connection may be of more immediate concern if it is

communicating over an ICS protocol.

Figure 8. External ICS network communication identification Bro script excerpt

Passive IP address geolocation can be conducted within this same script using the

offline MaxMind GeoIPLite database to plot attempted and established connections from

the ICS network and the protocol used. The geolocation and plotting of external

connections on a map should help to determine approximately where anomalous traffic is

bound. This method would assist in distinguishing innocuous connections, like packets to

several IP-enabled meters within a utility’s service area, from nefarious connections, like

recurrent unauthorized beaconing to a foreign country’s IP space over ICS protocols. Bro

scripts can be written to convert and store relevant connection attempts using JavaScript

object notation (JSON). Formatting processes can be conducted during Bro’s

initialization and completion to directly write output to a JSON file as shown in Figure 9.

 42

This offline JSON data feed should be continuously-updated while also being projected

onto a world map using the jVectorMap library.

Figure 9. Bro script variable translation to jVectorMap overlay data

Not only should external Internet access be disallowed but so should several other

protocols within the ICS network and ICS DMZ [63]. FTP and trivial file transfer

protocol (TFTP) are common ICS transfer protocols which use minimal processing

power that is ideal for limited hardware [15]. Not only are FTP and TFP vulnerable

services, since cleartext passwords are used for FTP and no login is required for TFTP,

but they are known to be used by malicious actors. Outbound FTP sessions could indicate

malicious intellectual property theft, so despite the legitimate use of FTP in some ICS

networks, any high-bandwidth FTP usage should be identified [64]. Similarly, inbound

Telnet sessions from the corporate network, simple network management protocol

(SNMP) versions 1 and 2, and any simple mail transfer protocol (SMTP) or other e-mail

traffic should be flagged [65].

Shamoon’s command and control (C2) traffic was configured to beacon home

every two hours. The module responsible for sending information about the infection to

the attacker would send an HTTP GET request including the domain name, number of

files overwritten, IP address of the compromised system, and a random number [66]. If

internal web servers are being used for SCADA services, examining irregular HTTP

properties like user agent strings can help to identify automated attack tools or manually-

performed attacks. Although the logging of requests is unlikely to be enabled for internal

SCADA servers that use HTTP as a transport protocol, HTTP traffic should be extracted

and characterized by the network-based toolkit.

 43

Depending on the communication methods used between ICS devices, the

enumeration of IEEE 802.1x wireless access points can detect rogue connections. NIST

recommends that wireless access points be located on an isolated network with minimal

connections to the ICS network [15]. Current in-range service set identifiers (SSIDs)

should be enumerated on ICS hosts since not only has the existence of in-range SSIDs

been used for previous non-ICS intrusions but in many critical environments there should

be no wireless access points accessible. Additionally, data can be extracted using the

“netsh wlan show profiles” command to indicate if a host has previously connected to

any wireless access points. If run as an administrator, the same command can be modified

with “key=clear” to list cleartext stored 802.11 wireless passwords, a technique that

should be provided within this research’s scripts for administrator awareness.

3. Registry, Startup, and Scheduled Task Persistence

The Mariposa bot kit found on a turbine control network used a registry startup

method that works on all Windows versions from all accounts, including limited guest

users, by modifying the Winlogin registry entries to enable the bot to start at boot [67].

The primary malicious module of the Monju plant incident added entries to the

Windows registry in one of two locations depending on Windows version and

system architecture. Backdoor keys are placed in the default software classes under

\InProcServer32\@=expand:”C:\WINDOWS\temp\install.ocx” within HKEY_USERS in

the registry, allowing the malware package to launch on system startup [50]. Shamoon

created the TrkSvr service that starts itself with Windows, which may have been

identifiable by monitoring the drivers set to load during startup. Malicious services can be

configured to automatically restart after specific service failures using the SC utility, a

utility that can also be used to query services for this property.

Comparing the hosts’ registries against each other and also against a clean

operating system baseline may be achievable in ICS networks, unlike most networks,

since significantly less software should be installed and user behavior is restricted. In the

absence of those registry baselines, several common locations are used for malicious

registry persistence and several specific locations were used by the malware from the ICS

 44

case studies. These locations, as well as the “shutdown” key value with a dynamic-link

library (DLL) loaded, should be checked in the registry.

The Mariposa malware also overwrote the user’s Desktop.ini file that initializes

on restart, a file often targeted for persistent access. Placing binaries and batch scripts

within users’ startup folders is a simple but effective tactic for maintaining persistent

access. In fact, during the Shamoon incident, attackers employed basic batch scripts to

assist in data gathering. The relatively low number of users and overall workstations in

the ICS environment should expedite the checking for these types of plaintext command-

line instruction files.

Both Stuxnet and Shamoon used the task scheduler to create and then delete tasks,

a process that should leave forensic artifacts for collection. Shamoon used the task

scheduler to create At.jobs for privilege escalation to the system account and also to

periodically run command-and-control modules. The task scheduler was ultimately used

to execute the wiper modules (system32\dfrag.exe and system32\dvdquery.exe) as well.

These names were selected from a hard-coded list of binary names to blend in with

system files. The tasks for Shamoon included logic for execution times, with the

Triggers/TimeTrigger property of the scheduled task as well as Actions/Exec for the

explicit command execution. If a high number of legitimate scheduled tasks exist in the

environment, only those with logic triggers or command-line execution need to be

examined for suspicious behavior.

Technical incident data can reveal multiple methods of scheduling Windows tasks

for both persistence and privilege escalation. It is necessary to check tasks scheduled

using a variety of services, such as AT jobs, BITSADMIN jobs, and jobs assigned with

SCHTASKS. To further separate potentially malicious tasks from innocuous

administrative scheduled jobs, tasks with executable actions, explicit command line

variables, and logic triggers such as time should be displayed prominently in the script’s

output.

Scheduling a task on supervisory systems within ICS networks may also produce

a log entry with EventID 602 for older versions of Windows or EventID 4698-4702 for

 45

Windows 6.0 and up. Systems can also be configured to log Event ID 567 or 4657 when

registry keys are modified so that a service is started at boot. Querying event logs can be

processor-intensive and detailed logging is frequently unavailable on ICS hosts; however

the scripts created for this thesis include relevant command-line search and extraction of

available event log data.

4. Process Injection and Hijacking

Stuxnet replaced a DLL file used by Siemens Step 7 to communicate with PLCs,

allowing Stuxnet to intercept, manipulate, and replay ICS traffic. While Stuxnet was

sophisticated malware, cleaning the infection was as simple as disabling or deleting two

signed driver entries, mrxclas.sys and mrxnet.sys, from the Windows\System32\

directory [68]. These files, dropped early on in the infection, are registered to start

when the system boots. Although it is difficult to check for changed file listings across all

hosts in the business network, it may be feasible to monitor specific directories on ICS

systems for malicious libraries intended for DLL search-order hijacking. Anomalous

characteristics should be recorded for running processes and services, like the loading of

non-Microsoft DLLs into services.exe, lsass.exe, or explorer.exe or processes launched

from user and temp directories. Determining the running processes that are not executing

from the operating system directory may be a valuable script for live production ICS

systems.

An excerpt from this thesis’ initial ICS running process attribute whitelist is

shown in Figure 10. Using the command-line, WMIC queries should be structured to list

all processes and services whose name or display name is not equal to those listed within

an external lightweight file. Results from all hosts should be counted by unique process

and output to a hypertext markup language (HTML)-formatted table.

 46

Figure 10. Excerpt from this thesis’ ICS process and service attribute whitelist

The commodity malware used for the Monju reactor compromise used malicious

implant code run by non-malicious trusted code, similar to DLL search-order hijacking

with a signed executable [50]. Because the streaming media player service downloaded a

malicious update, cleverly named as the setup for the beta version of the player, the

malicious modules all ran at the same privilege as the legitimate streaming media player

process.

Special attention should be paid to limit processes that are installed and listening

on multiple boxes which, if compromised, provide access to multiple hosts [63]. With

fewer systems and processes running than traditional IT networks, it should be possible to

identify anomalous processes running in control centers using WMIC with the /node

switch for remote hosts and a well-structured central query.

5. File System Sabotage

The malware used at the Monju plant hid itself with double file extensions,

padding .dll files as .tmp and .pdf files [50]. Running a file-type classifier such as the

 47

Linux “file” command or detecting extension mismatches in system or temp directories

can help to identify previously-unknown malicious files. Not only can analysis be

conducted on the hosts for these extension mismatches, but also within the network

traffic captures.

While rare file extensions may be more common within ICS networks due to the

systems’ specialized function and regular dependency on proprietary software, isolating

non-standard software associations may help identify file types that have been registered

to start with malicious programs. Additionally, the Windows registry debugger value can

be set to hijack file associations to execute them with malicious software. This is

accomplished by setting the debugger string value within the registry’s image file

execution options for a given executable and can be achieved with a single command.

The Mariposa malware, a variant of which has been found on ICS networks, and

several other well-known malicious programs copy binaries into the C:\RECYCLER

folder. Specifically, Mariposa copies a file called dllrun32.exe, but finding any non-

deleted files in the RECYCLER or newer $Recycle.Bin directories may be of interest in

assessing the security of the ICS domain. All files in C:\$Recycle.Bin\(SID)* should

have filenames that start with a ‘$’. The recycling bin may also contain interesting

recently-deleted data, so it should be checked for .exe, .rar., .zip, and .txt extensions to

consider files for forensic recovery.

Although compressed archives may be common at some critical sites for

packaging large amounts of data to move between segmented networks, the presence of

anomalous compressed archives on ICS file systems has been linked to malicious activity

and thus is included in this method. The logs of antivirus and other system scanning

solutions may include historical information on encrypted compressed archives that could

not be opened and inspected at a previous time, even if those archives no longer exist.

During the Monju reactor’s infection, a self-extracting compressed .rar archive

was used to deliver components [50]. Shamoon used compressed archives on the network

to package reconnaissance data including hostnames and IP addresses (hostnames.rar,

ips.rar) and also to deliver malicious tools like Windows credential editor (wc.zip,

 48

w64.zip). Even limited ICS hardware can run the WMIC command with

path=cim_datafile and when passed a WMIC query language (WQL) “where” clause for

the desired extensions should be able to list all compressed archives on Windows hosts in

the environment.

Automated file listing and property checks can also include the auditing of certain

applications like Windows Sticky Keys (sethc.exe) and Windows Utility Manager

(utilman.exe) that are often replaced for privilege escalation and malicious persistence.

These files generally require local access to modify but they are launched with specific

keyboard sequences with administrator privileges. Another file listing trick that malicious

users can exploit is the way Windows handles unquoted executables. If paths include

spaces, such as ‘C:\Program Files\’ or ‘C:\Documents and Settings\,’ and references to

these locations are missing the quotes around the full path, Windows will separate file

items at the spaces. For the examples provided, C:\Program.exe and C:\Documents.exe

would be executed if those files existed and references were missing fully-quoted paths.

Auditing for unquoted executable usage can be conducted quickly with few false

positives expected.

6. Internal Network Lateral Movement

Adversaries attempt to transition through internal networks to gain control or

access on a system inside the target security zone from a network presence on a lesser

security zone. Stuxnet accomplished this lateral movement by propagating over network

shares, exploiting a printer-spool vulnerability, and through Windows remote procedure

call (RPC) commands [39]. Stuxnet enumerated user accounts on the computer and

attempted to explicitly login with the user’s credential token to all network resources and

execute itself on remote shares. If Stuxnet determined that the ADMIN$ share was

accessible, it repackaged the malicious code with the latest configuration data block and

copied itself to the share with a .tmp filename. A network job was then scheduled to

execute the file two minutes later. Shamoon also copied itself to accessible network

shares then, if successful, executed itself remotely. Network shares and shared printers

 49

make attractive targets to span network zones so the toolkit should attempt to identify

these pathways on ICS networks.

A module of Gh0st RAT used at the Monju plant allowed for peer-to-peer

communications to further propagate through the target network [50], so processes

listening or established internally on unexpected ports may identify malicious

infrastructure.

Internal lateral movement can also appear as many flows from a single

workstation to others that normally do not communicate, especially over ports 139 and

445. If logs are available, Event ID 552 in the Security event log may help identify

accounts and systems used to conduct this activity, and these can then be filtered to

isolate malicious behavior and lateral movement.

7. Portable Media Exploitation

The creators of Stuxnet probably used portable media devices for the initial

infection vector, due to the Microsoft Windows shortcut ‘LNK/PIF’ automatic file

execution vulnerability [39], allowing auto-execution from USB drives. Also, the 2012

power generation facility compromise and the turbine control network Mariposa infection

published by ICS-CERT resulted from employee and contractor usage of infected USB

drives [48]. Mariposa is known to use the AutoRun string to spread via USB [67]. ICS

network hosts should be audited to ensure that AutoRun is disabled in the registry for

portable media and unknown drives or devices. On Windows XP and below, this setting

can be found in the Policies\Explorer\NoDriveTypeAutoRun keys within

HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER in the registry, so

extraction and interpretation of these values from the command-line should be pursued.

Furthermore, most current operating systems and even some legacy systems

provide queryable records of inserted portable media devices. Custom scripts can be

created to check USB device connectivity, make and model of previous devices, and

other metadata to determine if ICS network security policies are being followed and if

malicious portable media exploitation has been performed. If the script is executed across

multiple nodes using WMIC, statistical analysis can correlate unique identifying registry

 50

values in HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR. Windows generates

and stores a unique instance identifier, often the device’s serial number, as a subkey in

the registry and stores the InstallDate, LastArrivalDate, and LastRemovalDate as

Property IDs 0x0064, 0x0066, and 0x0067 respectively. The container identifier can be

cross-referenced with other variables elsewhere in the registry to determine if AutoRun

was enabled and to find the specific drive label. This method should allow the ability to

categorize portable media characteristics such as vendor and device model and timeline

each unique device’s usage across the ICS network.

8. User Activity Abnormalities and Remote Access Abuse

Malicious attackers often create user accounts or leverage stolen credentials for

pre-existing accounts to conduct their desired actions. User accounts are difficult to

manage on segmented networks with custom network architectures at each site for

synchronizing active directory and the domain controller with the business network. It is

expected that there may be some unused and incorrectly-configured accounts on ICS

systems since user access may be more difficult to audit than on other systems. With

comparatively few nodes on an ICS network, a full listing of user accounts can quickly

and automatically be analyzed for various traits using command-line tools. Host-based

artifacts, and the corresponding log events if available, should be analyzed for locked-out

accounts, users who have never logged on, passwords that never expire, guest accounts

belonging to a group, blank administration passwords, and the creation of new user

accounts and their naming convention, and simultaneous sessions across multiple

machines to discover possible compromised user accounts and intrusion pathways.

One specific behavior that a toolkit should attempt to identify is suspicious

activity when users are not at work. Many of the studied incidents were either detected or

later correlated with off-hour access into network. Leading up the Shamoon attack,

persistence was established and surveillance was regularly conducted during off hours.

This is a consistent trait for many sophisticated intellectual property theft intrusions on

the business network as well, with over 97% of a sophisticated nation-state’s 1,905

observed remote desktop protocol (RDP) infiltrations occurring during that country’s

 51

standard business hours, which are off-hours for the United States. For ICS networks,

there may be a specific time window that any organization would not expect human

interaction with process control. Although certain situations may necessitate after-hours

remote access to an ICS network, these may be identified by plotting remote interactive

logons (type 10) against time of day, and likely the anomalies could be explained by the

staff.

Identifying user behavior anomalies has become more challenging with modern

SCADA engineers’ growing expectation of and reliance on remote access to ICS systems

at other locations. The Worcester airport intrusion was conducted by abusing dial-up

remote access intended for engineers. Since some ICS networks still use dial-up modems

or wireless data for direct or secondary RTU access, these access points may provide

valuable anomalies from normal engineer access. The Shamoon attackers enumerated

RDP servers and attempted to use several legitimate tools, including PSExec, Net, and

Mstsc to exploit trusted access pathways. ICS-CERT did not release which technologies

specifically were used in the May 2014 sophisticated remote access abuse intrusion [26],

however companion alerts issued reference RDP, virtual network computing (VNC), and

Sysinternals tools including PsExec. To use any Sysinternals tool you must accept

the EULA on that system which leaves a record within the registry, which presents

a unique and quick way to determine these tools’ presence from the command-line

without searching the entire drive. To do this, the value should be checked for

Software\Sysinternals\PsExec\EulaAccepted in the registry.

According to a document released by NERC, the Slammer worm that affected the

Davis-Besse nuclear plant also downed another electric utility’s critical SCADA network

after moving from a corporate network, through a remote computer, to a VPN connection

to the control center LAN [69]. VPN logs can be compared across hosts within the ICS

network and across network zones. Information can be extracted from these and other

related files to identify anomalous and possibly malicious usage.

Separating legitimate use of trusted remote access tools from malicious use is

challenging, but several distinct properties of ICS networks may assist in developing a

technique to reliably accomplish this. Despite being highly valuable for analysis, detailed

 52

logging of remote access events in the ICS domain cannot be expected at all sites, and

thus relevant forensic artifacts for these access methods must be collected from various

locations in the file system using compatible command-line tools.

D. CONSOLIDATED TACTIC IDENTIFICATION

If an unauthorized user had previous access or currently maintains malicious

persistence on an ICS network using any of the described adversary tactics, forensic

artifacts should be available for careful collection and analysis.

Malicious tampering with ICS field devices communicating over industrial

protocols may result in anomalous device operation and unconventional communication

patterns. This activity should be identifiable with statistical analysis of function codes

even without prior knowledge of the specific ICS site due to minimal network noise and

field device behavioral expectations. Analysis should be conducted primarily on ICS

network traffic with additional device functionality fingerprinting assistance from host-

based queries.

Network traffic should be examined for attempted and established external

connections, since client-side attacks require access from outside the ICS network.

External connection and traditional protocol analysis should also reveal beaconing

commodity malware as well as weak security practices that can or have been used as

adversary access channels, with geolocation helping to triage previously-unknown

connections. Host-based artifacts should be used to support historical external access.

Several known locations used for malicious persistence that survive system

reboots, such as specific registry keys, system startup locations, and scheduled tasks

should be examined for content that is unexpected on critical networks and also

correlated among devices to identify software anomalies. Host processes and their

imports should also be examined to ensure only expected minimal processes on critical

nodes. Popular file system locations should be carefully examined to identify data-

exfiltration staging areas and the modified files and extensions used for privilege

escalation. The startup persistence, system process, and file system artifacts should be

compared across hosts and analyzed with an ICS-specific attribute whitelist and blacklist.

 53

For additional vulnerable ICS network access vectors, host-based artifacts should

be extracted that provide context on internal network pathways, portable media usage,

and remote access abuse. To increase analytical confidence in these findings, these

forensic attributes should be checked with on-site ICS engineers and compared with

network traffic to isolate malicious behavior from observed anomalies.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. EXPERIMENTS

A. DATASETS

A goal of this research was to design a reliable and effective ICS malicious

activity identification toolkit. This chapter provides an analysis of the toolkit’s operation

and its investigative strengths and weaknesses. Tests were conducted on a variety of data

sources, including voluntarily-submitted and publicly-available ICS network traffic as

well as researcher-provided sophisticated advanced persistent threat (APT) malware and

packet captures.

When sufficient technical data was unavailable on adversary tactics, techniques,

and procedures (TTPs), actions were recreated on an array of virtual machines configured

with a variety of operating systems and software representative of a typical ICS

installment. The resulting forensic evidence was used to validate and enhance the host-

and network-based scripts.

B. INITIAL RESULTS

The prototype toolkit consisted of eight substantial command-line utility scripts

representing each adversary tactic researched, with several supporting batch scripts for

adhering to ICS device limitations and formatting results. Although Bro is open-source

software that includes many built-in functions and analyzers, several custom Bro network

programming-language scripts were written that extend the coverage and capability of the

methodology. I have authored all described host and network-forensic artifact-collection

scripts for each specific adversary tactic explained. I have matured and improved the

toolkit’s scripts over time and several excerpts and iterations have demonstrated an

ability to collect forensic details within the operational constraints of real-world sensitive

environments at various critical infrastructure sites. The most recent versions of the file-

sabotage, process injection and hijacking, and internal network lateral movement host-

based scripts have not been tested on ICS networks but have performed as intended in the

simulated environment.

 56

The preliminary findings from testing the toolkit can be used to assess the

methodology’s performance and adherence to unique ICS constraints. The scripts will be

continuously improved as more data is processed so that observed ICS activity and

potential pathways can be directly translated into the toolkit’s growing ICS forensic

attribute whitelists and blacklists.

1. Operation within Constraints

To operate within the ICS domain without affecting ongoing operations, all host-

based tools had to be run at the lowest priority level to allow process control functions to

operate at full availability. This was accomplished by using the built-in Windows base

priority function to force the process and thread priority to the lowest possible level [70].

Attempts to lower the host script’s priority from within by referencing its own process ID

(PID) produced inconsistent results. The most successful technique was to launch all

host-based scripts from within a separate wrapper function that reliably set the priority

for all spawned processes. Set at idle priority, the scripts only use free processing cycles

and do not interrupt any functions. Idle priority is normally used for lightweight software

such as desktop screensavers and applications that only require periodic updating. Within

the master script, the user is given the option to increase this priority level if faster results

are desired and the system can tolerate it. All host-based scripts were successfully

launched at the lowest priority level and monitored to ensure that they adhered to this

constraint (Figure 11). Additionally, disk reads and writes were minimized through

similar process monitoring to safeguard against retrieving too much data, which could

overwhelm a resource-constrained ICS system.

Figure 11. Host-based scripts running at lowest priority

The command-line utilities employed on the hosts were selected not only based

on their ability to produce reliable results for identifying each adversary tactic, but also

 57

for their support on legacy operating systems. The logic built within the scripts

successfully refrained from executing on unsupported versions by using the VER

command and checking the %OS% and %COMSPEC% environment variables. The

WMIC command, which allows for detailed system management from the command-line,

can be run with the “/node” option enabled to run the host scripts across multiple systems

and centrally collect the data, while generating minimal network traffic.

The network-based toolkit successfully functioned without the need for active

interaction with devices. This was confirmed by replaying historical network traffic

through the scripts to produce the results, while running tcpdump to intercept and display

packets on the system running the network-based scripts. Although not a requirement, the

network-based toolkit performed with no delay while running on a consumer-grade

laptop, demonstrating that the toolkit is flexible enough to run on any platform

compatible with Bro. Custom Bro scripts should work under all possible constraints in

the ICS network because they are passive by design.

2. Explanation of Host-based Toolkit Functions

Figure 12 shows a use and compatibility matrix for this research’s host-based

toolkit, illustrating all commands used and the operating system support for each

command. The core utilities were used in all scripts and the individual commands

beneath were only needed for individual adversary tactic identification scripts. Of note,

WMIC is heavily used in this toolkit and while it is not included by default in OS

versions prior to Windows XP, Microsoft released a package that allows it to function

with legacy versions starting with Windows 95. Executing this package on remote

machines requires some additional steps to ensure the software is running [71]. Any tools

that require the installation of additional resource kit packages have been noted on the

Figure 12 [72]. REG was used as a quick, compatible method to query the Windows

registry for specific keys related to the eight adversary tactics within all scripts. The

FIND command and the more demanding FINDSTR command when necessary were

used to incrementally search for values and regular expression strings within the output

of several other commands. WEVTUTIL was included for its ability to quickly isolate

 58

relevant event log files, but its use is optional since the kit was designed with the

expectation that WEVTUTIL would not be supported and that the target system’s event

logs would be insufficient.

O
p
e
ratin

g Syste
m

OS Name
95 /
NT

98 ME 2000 XP
XP 64 /
Server
2003

Vista /
Server
2008

7
8 / Server
2012

Version 4.0 4.1 4.9 5.0 5.1 5.2 6.0 6.1 6.2

C
o
re
 To

o
ls

WMIC * * * *     
REG * * * *     
FOR         
FINDSTR * * *      
FIND         
WEVTUTIL   

Tactic M
o
d
u
le
‐Sp

e
cific To

o
ls

ARP         
IPCONFIG         
NETSH      
NETSTAT         
TYPE         
SC      
SCHTASKS     
BITSADMIN   
DRIVERQUERY     
TREE         
DIR         
ASSOC      
FTYPE      
NBTSTAT        
DOSKEY         

 *Note: OS version requires installation of additional command‐line utility package

Figure 12. Host-based command usage and operating system compatibility

The additional command-line utilities used only in selected scripts are presented

at the bottom of Figure 12 in the same order as the corresponding adversary tactic is

described in this thesis. Most utilities are run with specific, tested command line

parameters to ensure stability of hosts. The ICS field device script used ARP,

IPCONFIG, and NETSH to extract MAC addresses from the local network, host

machine, and in-range wireless devices, respectively. The external connection host-based

 59

script used IPCONFIG, NETSTAT, and TYPE to display the DNS cache, correlate a host

process to network behavior observed, and to output cookies from file paths determined

by Windows version.

While registry persistence was checked entirely with the core REG command, the

startup portion of the persistence script employed TYPE to output contents of each host’s

startup folders and SC to query services that automatically restart or trigger based on

failure conditions. The scheduled task portion of the persistence script primarily used

WMIC but also applied the SCHTASKS and BITSADMIN utilities to output their

respective scheduled job data to a central report for identification of malicious dormancy

and privilege escalation attempts.

The process injection and hijacking script mainly used the core WMIC tool’s

querying language as well as FIND to identify processes running from %TEMP% or

%LOCALAPPDATA% and to compare processes and DLL imports with ICS artifact

whitelists and blacklists. The process injection script also leveraged DRIVERQUERY to

display details about loaded unsigned drivers as well as a consolidated list of certificates

used for the drivers that were signed for easy analysis.

The file system sabotage script harnessed WMIC to parse the cim_datafile for

compressed archives along with TREE and DIR with special parameters to check for

unquoted executables, recently created binaries, and anomalous files in the RECYCLER.

The file system sabotage script also used REG to query SOFTWARE\Classes and

provide anomalous debugger and image file execution keys. The file system sabotage

script combined results of ASSOC and FTYPE to output file extensions and their linked

programs for anomalous extensions that do not exist in the baseline operating system.

The internal lateral movement script relied on WMIC to provide various shared

resources such as printers that could span network zones. The same script also used

NETSTAT to check potential services in use and the NBTSTAT tool to display cached

historical NetBIOS connections.

 60

The portable media script employed only the core utilities to extract currently-

and previously-connected portable devices, extracting uniquely-identifying data from

various registry entries to correlate their usage across all hosts. The script also extracted

AutoRun settings from various forensic locations to determine portable media

propagation risk.

The user behavior and remote access abuse script largely used WMIC and

WEVTUTIL (if available) to first search for specific Event IDs if present, then query

TerminalServices, RemoteConnectionManager, and LocalSessionManager for RDP

artifacts in the absence of security event log data. The script was built with input

parameters to whitelist certain time periods so as to narrow results to specified anomalous

off-hours. The user behavior and remote access abuse script also used DOSKEY to

extract explicit command-line usage from memory.

3. Concerning Findings

The network-based scripts to passively identify external communication paths

from the ICS network proved to be valuable and reliable. External connections from the

ICS network were quickly identified in the studied data that provided an understanding of

how the network was configured, such as a company’s interconnection of an ICS network

with the DNS and network time protocol (NTP) servers on their business network in

Figure 13. Other systems attempted outbound connections to the Internet over NetBIOS

and other non-ICS protocol ports. In addition, pathways and network traffic fragments

were identified between several devices and 143.127.102.40 in Cupertino, CA,

Symantec’s LiveUpdate server for virus definitions; this was further validated

when the host-based scripts extracted securityresponse.symantec.com and

liveupdate.symantecliveupdate.com from the DNS cache. A separate ICS network traffic

sample showed systems attempting to connect to guru.avg.com and bguru.avg.cz to

update the Anti-Virus Guard (AVG) antivirus product. In yet another sample data set, the

host- and network-based scripts quickly revealed other attempts to product update

websites for multiple ICS equipment vendors. Although the inconsistent attempts to

external networks in this data were system misconfigurations and attempted product

 61

updates, this analysis could have similarly identified beaconing malware and malicious

external command and control attempts.

Figure 13. Identified communication paths from ICS network

The real-time visualization of attempted and established external network

connections from the ICS domain provided value once the automated offline analysis and

packet capture (PCAP)-to-JSON conversion scripts were completed. The jVectorMap

representation of one real-world ICS network’s external connection attempts is shown in

Figure 14. When foreign IP addresses are included in the JSON data, the map was

programmed to display a world map.

Figure 14. External connections output from this thesis’ network-based toolkit

 62

HTTP protocol analysis revealed interesting characteristics unique to ICS

networks. Built-in Bro IDS alerts were triggered because some traffic samples included

invalid HTTP methods. In those cases, vendors had configured their product to use a

[VENDORNAME]_POST method and used HTTP as a convenient transport protocol.

Other analysis showed HTTP access to DLL files and posting values directly as variables

(/[vendor]/[vendor].dll?v=update). These ICS device HTTP traits will be added to the

growing whitelist of atypical vendor implementations of traditional network protocols.

USB drive insertion data is of immediate interest during incident response and is

critical for sites whose network security policies disallow portable media usage. Figure

15 shows the output of the host-based script when run against a test system with many

USB drive insertions. In the prototype toolkit there are permission issues accessing the

Properties subkey which contains dates that were originally going to be plotted on a

timeline. This will be fixed in the next iteration, and the AutoRun flag and the user who

accessed the drive will also be displayed to further assist security teams.

Figure 15. USB insertion script output on test system

The above results constitute suspicious data of moderate confidence. As more

data is processed, such suspicious findings can be further separated into confirmed

malicious findings in the form of a blacklist, and moderate-confidence suspicious

 63

findings will be used to maintain a more flexible ICS behavioral greylist that may be only

indicative of compromise when combined with other observed activity.

4. Valuable Discoveries

The initial version of this toolkit provided valuable configuration information

about a particular site as well as a more general understanding of industry ICS network

installments across multiple sets of data. Execution from both the command-line of the

system and on live or historical network data provides new observational capabilities. For

instance, Figure 16 shows remote querying of an endpoint to identify connected

equipment. This host-based script was further improved to show in-range wireless access

points and previously wireless connections, if any.

Figure 16. Host characteristics extracted from command-line utilities

Although host-based command-line device enumeration will be valuable in

environments without historical network traffic captures, the network scripts created in

Bro demonstrated far more utility and flexibility in this area. The network-based

enumeration and correlation across several nodes is completely passive and device-

agnostic. Bro is built around real-time generation of logs for immediate viewing and

alerts, but its language supports a variety of outputs and data structures. Traditional

stream-based output is supported in the ICS device-fingerprinting code created for this

thesis, but the real utility of the toolkit is the comprehensive collection of device

 64

information in scalable arrays and searchable sets of addresses that associates known

device information together automatically, without having to further parse the output.

The script pulls MAC (physical) addresses and IP (logical) addresses from ARP

requests and replies, and extracts MACs, IPs, and hostnames from DHCP request,

inform, and discovery packets. MAC addresses were passively observed for 64% of

devices on the LAN and 100% of the hardware vendors were identified from those MAC

addresses. 100% of the internal device IP addresses were collected, which is to be

expected for TCP/IP to properly function, and none were identified as dual-homed

(a system having multiple network interface cards and thus multiple IP addresses per one

MAC address). Only 12% of hostnames were observed in DHCP traffic, likely due to the

prevalence of static IP assignments in critical networks. This was a known consideration

during network toolkit creation, and so the script includes an event to trigger when a DNS

address (type A) reply is to an internal IP address that does not yet have a known

associated hostname and for which the corresponding query’s subdomain substring is

used for the hostname. Using both DHCP and internal DNS extraction, 41% of

hostnames were identified. These hostnames have been removed Figure 17 to keep the

processed data private. According to Bro’s built-in operating system analyzer, the

majority of operating systems in the data were outdated and unsupported versions of

Microsoft Windows, validating the focus on those systems with the host-based kit.

 65

Figure 17. Summary of host characteristics extracted from network data

The toolkit extends the built-in fingerprinting with some initial ICS protocol and

supervisory device trait-matching. For instance, based on publicly-available vulnerability

data released for Wonderware’s SuiteLink service [73], any Windows OS host listening

on UDP port 5413 with connections to one or more systems that speak other ICS

protocols is flagged by the script as likely a WonderWare InTouch HMI. This rough ICS

device cataloging capability should grow as more artifacts are ingested and processed.

For proper comparison, 24-hour periods of Modbus and DNP3 network traffic

captures from several critical infrastructure sectors were analyzed and correlated. One of

this thesis’ Bro scripts attempted to identify ICS protocol abnormalities while another

script attempted to fingerprint devices’ specific roles in the ICS network based on their

register values and their function and exception codes. The first script’s analysis

indicated that the ingested data did not contain any protocol convention anomalies or

suspicious ICS function code usage, which may indicate malicious tampering or field

device modification. All examined ICS protocol traffic contained only register reads and

writes, which was confirmed through packet analysis outside of the toolkit, so the

 66

extraction of potentially malicious activity based on anomalous protocol events was not

tested.

Analyzing the same source data, the second Bro script’s output did not indicate a

significant correlation between ICS protocol function code patterns or register-boundary

values and the field device’s role (e.g., HMI, RTU, PLC). This may also be a result of the

limited ICS device functions observed. Frequency analysis of observed Modbus and

DNP3 function codes is provided in Figure 18. Across all samples, slave field devices

had an average of 5.5 registers. Register ranges varied significantly even on a single

device, as in one case a device’s register only changed by within a range of one across a

24-hour period but the device’s other register had a range of 65,369. The average low

boundary value for registers was 8,594 and the average high boundary was 37,248, but

the protocols are device-agnostic so more meaningful anomalies or further indications of

malicious behavior could not be extracted from the field devices’ numeric register-values

without knowing the specific processes they controlled. There are likely values for field

device register limits and metrics so alerts could be created based on manually-input

expectations. Alternately, future iterations of the Bro script may record register changes

as a percentage of the current values. The extraction and correlation of ICS protocol

functions did however support the assertion that ICS networks have a high signal-to-noise

ratio since anomalous function codes, exception codes, and malformed packets should be

significantly distinguishable if present in captured data.

Protocol Function (Code) DNP3 Modbus

DNP3 Confirm (0) 0.02% 0.00%

DNP3 Read (1) 99.98% 0.00%

Modbus Read Coils (1) 0.00% 56.26%

Modbus Read Holding Registers (3) 0.00% 25.90%

Modbus Read Input Registers (4) 0.00% 13.57%

Modbus Write Single Coil (5) 0.00% 3.01%

Modbus Write Multiple Registers (16) 0.00% 1.26%

Grand Total 100.00% 100.00%

Figure 18. ICS protocol frequency analysis in dataset

 67

C. TOOLKIT LIMITATIONS

This section covers several weaknesses in the current version of the methodology,

including examples of tool-specific inadequacies and a survey of observed type I and

type II errors in the automated analysis.

1. Toolkit Deficiencies

One significant limitation of the approach is its inability to calculate

cryptographic hashes to verify authenticity of files due to the absence of built-in

Windows command-line hashing. Since firmware is not commonly digitally signed for

ICS devices, hashes should be computed to compare against manufacturer data provided

in documentation or online. Several community tools are available and Microsoft

released a command-line hashing utility (FCIV.exe) in 2004, but it is not built into the

Windows OS versions examined. A PowerShell script can likely accomplish

cryptographic hashing but that limits compatibility and a scripted cryptographic routine

may overly tax the limited resources. Bro’s file framework is impressive and can

passively categorize, extract, and hash all files sent in packets, so modification and

extension of Bro’s file framework will aid future firmware analysis functionality.

Several studied adversary attack techniques only produced accurate forensic

artifacts when the same command-line utilities used by an attacker were also used to

query the host by a responder. This suggests the need to investigate command-line utility

outputs before claiming full coverage. For example, within the task-scheduling

persistence identification script, simulated malicious tasks for privilege escalation and

reboot persistence created on a Windows XP host with the AT command were only

revealed by WMIC, and tasks created with SCHTASKS command were only revealed by

querying SCHTASKS. On Windows Vista and up, a third built-in tool, BITSADMIN,

allows scheduling of malicious tasks that are only revealed by listing from BITSADMIN

and no other tools, as illustrated in Figure 19.

 68

Figure 19. Three command-line tool queries with mutually-exclusive results

Although this host script does query each service and identifies jobs scheduled

from all methods, the output is difficult to parse and thus a more reliable, central

location should be used to find these tasks. Forensic locations such as

%windir%\Tasks\SchedLgU.txt for Windows XP and below, and Microsoft-Windows-

TaskScheduler%40Operational.evtx for Vista and above, may centrally store this data for

all tools and the scheduled task persistence identification script can extract data from

those locations.

Separating malicious access from trusted access was difficult in the ICS

environment despite the high signal-to-noise ratio. While the toolkit reliably

distinguished automated device activity from human-initiated activity, further separating

trusted user behavior from malicious attacker behavior was challenging with limited

historical visibility and inconsistent logging on the systems analyzed. Some promising

data was found outside of command-line tools and parsed event logs, such as within the

*.rdp files on the host and within parsed remote access network traffic, but the initial

scripts were unable to automatically extract that data in a meaningful way that applied to

multiple sites.

Similarly, malicious internal lateral movement was difficult to identify in this

environment due to the number of accounts with administrative privileges and ICS

vendors’ pervasive usage of server message block (SMB) and NetBIOS for access to

 69

shared resources. This should diminish with the development of more robust vendor-

specific whitelists.

2. False Positive Errors

Type I errors, or false positives, occur when non-malicious is identified as

malicious activity. The collection of large datasets without honed capabilities to analyze

the data resulted in a high number of false positives.

False positives were more likely to occur when only host or network data was

available. Ideally, toolkits should try to determine where data went that left a host or what

process was running that was using a suspicious protocol. In these experiments, some

host-based activity that was flagged as malicious was SCADA engineers moving laptops

between network zones. It was assumed that a host remained in an environment, so

laptops moved between zones generated several suspicious traits, such as using many

fully-qualified domain names that did not actually represent external attempts from

within the ICS network. But since connecting laptops to and from the ICS domain is not

advisable, these may not be considered false positives.

Within one data set, an indication of external information exfiltration over an ICS

protocol, OASys DNA, was actually a Type I error that resulted from incorrect

programming. An external connection identification Bro script did not originally include

255.0.0.3 in its whitelist, a reserved multicast address. In another set of data analyzed, a

router was configured to send a response back to attempts to connect out of the ICS

network. The toolkit’s connection state logic has since been reviewed and the IP subnet

whitelist now correctly reflects all intended requests for comments (RFCs) from the

Internet Engineering Taskforce (IETF).

Within the network-based toolkit results, more activity was observed than

expected with Telnet, NetBIOS, SNMP, and HTTP protocols. Specifically, many ICS

systems were observed using embedded HTTP functionality for diagnostics and

monitoring. The analysis of unexpected HTTP user-agent strings requires a more

comprehensive understanding of the ICS software that uses HTTP, or the use of filtering

 70

by unique properties like session duration, so that fewer anomalies are highlighted to the

toolkit’s user.

3. False Negative Analysis

A Type II error, or a false negative, is when malicious activity existed but was not

detected. Because none of the data included a confirmed compromise, errors of this

category were difficult to find. It is important, to note that, when searching for malicious

attackers, the old criminal profiling aphorism “the absence of evidence is not the

evidence of absence” applies.

One possible design flaw that could lead to false negatives is within the

geolocation and visualization of external connections. Several samples included external

attempted and established connections to cellular data devices. In one instance, a SCADA

server was communicating with several dozen Verizon devices with no uniform IP

address assignment, which could reflect sites replacing old direct dial-up access with

cellular data connections. Geolocation will never be able to place these devices

accurately on a map since they do not have set locations and are assigned in pools by

mobile providers. Although separate online whois queries can be conducted and collated

for some assistance, an adversary could blend into this access pathway or maintain

persistence by beaconing out of an ICS network to an adversary-owned mobile device

from the same provider.

Additional false negatives may have occurred in the studied data due to the lack

of built-in Bro support for ICCP, OPC, and some other observed proprietary ICS

protocols. However, these protocols communicate in cleartext like many other supported

protocols (e.g., Telnet, FTP, MySQL, and HTTP), so more work needs to be done on the

network toolkit to include the parsing of cleartext ICS protocols.

 71

VI. CONCLUSIONS AND FUTURE WORK

A. IMPACT

This thesis described the need for a forensic capability tailored to industrial

control systems. It then described and tested several techniques for identifying and

analyzing potential malicious activity and adversary access pathways within ICS

networks. This resulted in the creation of several tools to be used for live production ICS

forensics and suggested some approaches to building high-confidence indicators of

unauthorized access. ICS networks do provide good signal-to-noise ratios for behavioral

anomaly detection. The need for tailored tools to identify potentially malicious access

pathways has been suggested by this work and the feasibility of such tools has been

established with the prototype host- and network-based toolkit.

Security assessment and incident response teams can use the approach to analyze

critical devices in an environment with minimal irrelevant data, then trace those findings

back into the business network instead of the other way around. The tools should assist in

making more confident intrusion judgments when malicious activity is suspected in the

ICS environment. With the careful selection of compatible tools, and a technique that is

passive and forensically cautious, these methods can be easily incorporated into many

organizations’ security processes.

B. FUTURE WORK

Due to the relatively long life cycle of systems in the ICS domain and the current

compatibility with Windows 8 systems, this technique is expected to be functional for a

while on Microsoft operating systems. However, Linux compatibility is needed and work

has already begun on translating the host-based examination commands for Linux. The

WMI core application has been ported to Linux, which presents a desirable host-platform

shift since Bro runs on Linux. If the host and network tools are executed from the same

system, compatibility should expand and the ability to cross-reference host and network

data should improve greatly. Adding agentless querying of real-time operating systems

such as VxWorks, Windows CE, QNX and embedded Linux should also be pursued.

 72

The host-based toolkit can be run on each host, transferring the HTML-formatted

output to a write-once CD or other protected media. The toolkit can also be run on

multiple hosts and centrally-collected, but this has only been tested on small, closed

networks, and already is generating significant amounts of data. If both host and network

data can be centrally analyzed, the data will require improved structures to ensure

performance is still acceptable. This approach of central collection and analysis of host

and network data allows additional features such as rootkit identification to become

possible by comparing host and network data. For example, if a port is communicating in

network traffic but not showing on a host’s netstat querying, a rootkit may be hiding it

from the Windows API.

The migration to a NoSQL document database for forensic data management

would increase scalability and reduce endpoint processing cycles even further.

Alternately, Bro may be capable of ingesting the host-based forensic output instead of a

NoSQL database and it could be used as a source-agnostic state machine to process

events. More interactive mapping of specifically-filtered data could be valuable.

Examples are the data-driven documents (D3) JavaScript framework to depict

relationships between collected artifacts, the portrayal of host anomaly timelines, and

visual incident triage beyond pure geospatial representation.

Future toolkit development should pursue the inclusion of network policy

checklists for each site to determine the logic used to find anomalies. To aid in

understanding potential adversary pathways, the toolkit should also include the collection

of or manual entry of network interconnect information, such as firewall logs, between

zones. It may be possible to identify the domain interconnection type from passive

network traffic already collected, since mechanisms such as data diodes have unique

communication patterns.

Additional offline databases of security information could be incorporated beyond

geolocation data, vendor information, and ICS protocol identification. Bro now has an

offline autonomous system number (ASN) lookup function to determine border gateway

protocol (BGP) routing and Internet Service Provider (ISP) information.

 73

The malicious activity blacklists and whitelists used were relatively small and

should be expanded. The total number of ICS-specific elements within the current lists is

less than 200 as collected from observed ICS hosts in industry and online documentation

(Figure 20). ICS hardware vendors could be contacted directly as an authoritative source

to assist in compiling attribute whitelists for their equipment.

Figure 20. Content distribution of initial ICS-specific whitelist

Future testing of the toolkit should be conducted on data that includes known

malicious activity attempts. To facilitate this, development of ICS network honeypots

should be pursued with tools like Conpot, released in 2013 by the Honeynet project to

simulate ICS networks [74].

C. CONCLUDING REMARK

As the increasingly connected systems that power modern society’s critical

infrastructure are subject to more scrutiny and attacks, those systems’ owners and

operators will need novel techniques for assessing and defending their ICS networks. The

methodology presented in this thesis has been tested and the supplementary toolkit has

demonstrated value. The ICS security community would benefit from further funding and

development of an incident response toolkit to assist in securing our Nation’s critical

assets.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

LIST OF REFERENCES

[1] B. Salem et al., “Brief history and use of chemical warefare agents in warfare and
terrorism,” Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and
Therapeutics, p. 2, 2008.

[2] W. Abrams, “Malicious control system cyber security attack case study–Maroochy
Water Services, Australia,” The MITRE Corporation, McLean, VA, 2008.

[3] M. Slay, “Lessons learned from the Maroochy Water breach,” Critical
Infrastructure Protection, Post-Proceedings of the First Annual IFIP Working
Group 11.10 International Conference on Critical Infrastructure Protection,
Dartmouth College, Hanover, New Hampshire, USA, March 19–21, 2007.

[4] C. Falliere, “W32.Stuxnet dossier whitepaper,” Symantec Corporation, 2011.

[5] DHS Industrial Control Systems Cyber Emergency Response Team, “ICS-CERT
Monitor: April/May/June 2013,” 27 June 2013. [Online]. Available: https://ics-
cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Apr-Jun2013.pdf.
[Accessed April 2014].

[6] DHS Industrial Control Systems Cyber Emergency Response Team,
“Recommended practice: Creating cyber forensics plans for control systems,”
August 2008. [Online]. Available: https://ics-cert.us-
cert.gov/sites/default/files/recommended_practices/Forensics_RP.pdf.

[7] P. Taveras, “SCADA live forensics: Real time data acquisition process to detect,
prevent or evaluate critical situations,” in 1st Annual International Interdisciplinary
Conference, Azores, Portugal, 2013.

[8] P. M. Hill, “Process control in the HPI: A not-so-sentimental journey,” 1 July 2012.
[Online]. Available:
http://www.hydrocarbonprocessing.com/Article/3050923/Process-control-in-the-
HPI-A-not-so-sentimental-journey.html.

[9] R. McClanahan, “SCADA and IP: Is network convergence really here?,” IEEE
Industry Applications Magazine, pp. 29–36, March 2003.

[10] A. W. Schwartz, “Control system devices: Architectures and supply channels
overview,” Sandia National Laboratories, Albuquerque, NM, 2010.

 76

[11] Centre for the Protection of National Infrastructure (CPNI), “Securing the move to
IP-based SCADA/PLC networks,” 2011.

[12] W. Shaw, Cybersecurity for SCADA Systems, PennWell Corporation, 2006.

[13] H. Kozushko, “Intrusion Detection: Host-Based and Network-Based Intrusion
Detection Systems,” 11 September 2003. [Online]. Available:
http://infohost.nmt.edu/~sfs/Students/HarleyKozushko/Papers/IntrusionDetectionPa
per.pdf [Accessed 18 June 2014].

[14] J. Lowe, “The myths and facts behind cyber security risks for industrial control
systems,” in Proceedings of the VDE Kongress, 2004.

[15] K. Stouffer et al., “Special publication 800-82: Guide to industrial control systems
(ICS) security,” National Institute of Standards and Technology, Gaitherburg, MD,
2011.

[16] C. Wueest, “Targeted attacks against the energy sector,” Symantec Security
Response, Mountain View, CA, 2014.

[17] V. Igure, “Security issues in SCADA networks,” in Computers and Security, 2006,
pp. 498-506.

[18] E. W. Clarke, Practical Modern SCADA Protocols: DNP3, 60870.5 and Related
Systems, Burlington, MA: Newnes, 2004.

[19] “Modbus frequently asked questions,” [Online]. Available:
http://www.modbus.org/faq.php.

[20] DNP3.org, “DNP3: A distributed network protocol primer,” 2005. [Online].
Available: http://www.dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf.
[Accessed March 2014].

[21] ODVA, “Open DeviceNet Vendors Association (ODVA) EtherNet/IP (Ethernet
Industrial Protocol),” [Online]. Available:
http://www.odva.org/default.aspx?tabid=67. [Accessed April 2014].

[22] Symantec, “SCADA vulnerability trends,” 2012. [Online]. Available:
http://www.symantec.com/threatreport/topic.jsp?aid=scada_vulnerabilities&id=vuln
erability_trends [Accessed 28 April 2014].

 77

[23] North American Electric Reliability Corporation, “Control systems security working
group (CSSWG),” 2013. [Online]. Available:
http://www.nerc.com/comm/CIPC/Pages/Control%20Systems%20Security%20Wor
king%20Group%20CSSWG/Control-Systems-Security-Working-Group-
CSSWG.aspx [Accessed June 2014].

[24] D. Dzung et al., “Security for industrial communication systems,” Prcoeedings of
the IEEE, vol. 93, no. 6, pp. 1152–1177, 2005.

[25] M. Cooksley, “Introduction to network security,” Belden Industrial Ethernet
Infrastructure Design Seminar, Philadelphia, PA, 2012.

[26] DHS Industrial Control Sytems Cyber Emergency Response Team, “ICS-CERT
Monitor: January - April 2014,” 16 May 2014. [Online]. Available: http://ics-
cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_%20Jan-
April2014.pdf. [Accessed 21 May 2014].

[27] A. Townsend, Smart Cities: Big Data, Civic Hackers, and the Quest for a New
Utopia, New York: W. W. Norton & COmpany, 2013, pp. 268–269.

[28] R. M. Lee, SCADA and Me: A Book for Children and Management, Birmingham,
MI: IT-Harvest Press, 2013.

[29] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, May 2008.

[30] J. Peerenboom, “Analyzing infrastructure interdependencies: Overview of concepts
and terminology,” Argonne National Laboratory, Argonne, IL, 2007.

[31] K. Rinaldi et al., “Identifying, understanding, and analyzing critical infrastructure
interdependencies,” IEEE Control Systems Magazine, 2001.

[32] National Transportation Safety Board, “Pipeline accident report: Pipeline rupture
and subsequent fire in Bellingham, Washington,” Washington, DC, 2002.

[33] K. Poulsen, “Software bug contributed to blackout,” 11 February 2004. [Online].
Available: http://www.securityfocus.com/news/8016 [Accessed 23 May 2014].

[34] U.S. Senate Committee on Commerce, Science, and Transportation, “Isolation of
condensate demineralizer system and subsequent plant trip while testing software
change (Hatch),” U.S. Government Printing Office, Washington, 2008.

 78

[35] J. Meserve, “Video: Staged cyber attack reverals vulnerability in power grid,” CNN,
9 September 2007. [Online]. Available:
http://www.cnn.com/2007/U.S./09/26/power.at.risk/ [Accessed 15 March 2014].

[36] Schweitzer Engineering Laboratories, Inc., “Mitigating the Aurora vulnerability
with existing technology,” in 36th Annual Western Protective Relay Conference,
Spokane, WA, 2009.

[37] Schweitzer Engineering Laboratories, Inc., “Myth or reality: Does the Aurora
vulnerability pose a risk to my generator?,” in IEEE Conference for Protective Relay
Engineers, College Station, TX, 2011.

[38] S. Dunlap, “Timing-based side channel analysis for anomaly detection in the
industrial control systems environment,” Air Force Institute of Technology, Wright-
Patterson Air Force Base, Ohio, 2013.

[39] E. Chien, “Stuxnet: A breakthrough,” 16 November 2010. [Online]. Available:
http://www.symantec.com/connect/blogs/stuxnet-breakthrough [Accessed 3
February 2014].

[40] S. Bosworth, Computer Security Handbook, New York, NY: John Wiley & Sons
Inc., 2002.

[41] DHS Industrial Control Systems Cyber Emergency Response Team, “ICS-CERT
Monthly Monitor: September 2012,” September 2012. [Online]. Available:
https://ics-cert.us-cert.gov/sites/default/files/ICS-
CERT_Monthly_Monitor_Sep2012_2.pdf. [Accessed April 2014].

[42] K. Kambic et al., “Crude Faux: An analysis of cyber conflict within the oil & gas
industries,” Purdue University, West Lafayette, 2013.

[43] C. Bronk et al., “The cyber attack on Saudi Aramco,” in Survival, 2013, pp. 81-96.

[44] C. D. Schuett, “Programmable logic controller modification attacks for use in
detection analysis,” Air Force Institute of Technology, Wright-Patterson Air Force
Base, Ohio, 2014.

[45] S. Kuvshinkova, “SQL Slammer worm lessons learned for consideration by the
electricity sector,” North American Electricity Reliability Council (NERC),
Princeton, NJ, 2003.

 79

[46] Tofino Security, “Cyber security incident case profile: Daimler Chrysler,” [Online].
Available: http://www.tofinosecurity.com/sites/default/files/CP-104-Case_Profile-
Daimler_Chrysler-rev1.pdf. [Accessed 25 April 2014].

[47] R. Esposito, “Hackers penetrate water system computers,” October 2006. [Online].
Available: http://abcnews.go.com/blogs/headlines/2006/10/hackers_penetra/.

[48] DHS Industrial Control Systems Cyber Emergency Response Team, “ICS-CERT
October/November/December 2012 Monitor,” 2 January 2013. [Online]. Available:
http://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Oct-
Dec2012.pdf. [Accessed April 2014].

[49] Japanese Atomic Energy Agency, “Incident disclosure,” 6 January 2014. [Online].
Available:
https://www.jaea.go.jp/04/monju/EnglishSite/4_Press%20release/140106_press_rele
ase.pdf.

[50] Context Information Security, “Context threat advisory: The Monju incident,” 27
January 2014. [Online]. Available: http://contextis.co.uk/research/blog/CTI_TA-
monju-incident/ [Accessed 19 March 2014].

[51] DHS Industrial Control Systems Cyber Emergency Response Team, “Common
cybersecurity vulnerabilities in industrial control systems,” May 2011. [Online].
Available: http://ics-cert.us-
cert.gov/sites/default/files/documents/DHS_Common_Cybersecurity_Vulnerabilitie
s_ICS_2010.pdf.

[52] E. Byres et al., “Security incidents and trends in SCADA,” in The Industrial
Ethernet Book, 2007, pp. 12-20.

[53] D. E. Denning, “Cyberterrorism: The logic bomb versus the truck bomb,” Global
Dialogue, vol. II, no. 4, pp. 29-37, 2000.

[54] Department of Justice, “Press release: Juvenile computer hacker cuts off FAA tower
at regional airport,” Boston, MA, 1998.

[55] D. Powner, “Critical infrastructure protection: Multiple efforts to secure control
systems are under way, but challenges remain,” GAO-07-1036, 2007.

[56] United States of America v. Mario Azar, 2009.

 80

[57] B. Gertz, “The cyber-dam breaks,” 1 2013 May. [Online]. Available:
http://freebeacon.com/national-security/the-cyber-dam-breaks/ [Accessed June 3
2014].

[58] Sandia National Laboratories, “Penetration testing of industrial control systems,”
March 2005. [Online]. Available: http://energy.sandia.gov/wp/wp-
content/gallery/uploads/sand_2005_2846p.pdf [Accessed 19 March 2014].

[59] Tofino Security, “Cyber security incident case profile: TVA/Browns Ferry,”
[Online]. Available: http://www.tofinosecurity.com/sites/default/files/CP-101-
Case_Profile-Browns_Ferry-rev1.pdf. [Accessed 25 April 2014].

[60] Digital Bond, Inc., “NERC CIP scan policies,” [Online]. Available:
http://www.digitalbond.com/tools/bandolier/nerc-cip-scan-policies/ [Accessed 12
June 2014].

[61] General Electric, “GE Fanuc support: Product work-arounds,” [Online]. Available:
http://support.ge-
ip.com/support/resources/sites/GE_FANUC_SUPPORT/content/live/KB/8000/KB8
854/en_U.S./Product%20Work-arounds.doc. [Accessed 2 May 2014].

[62] Siemens AG, “ES - SIMATIC Manager product information and checking
compatibility,” 20 January 2012. [Online].

[63] Centre for the Protection of National Infrastructure (CPNI), “Process control and
SCADA security: Good practice guide,” 2008. [Online]. Available:
http://www.cpni.gov.uk/documents/publications/2008/2008031-
gpg_scada_security_good_practice.pdf.

[64] DHS Industrial Control Systems Cyber Emergency Response Team,
“Recommended practice: Developing an industrial control systems cybersecurity
incident response capability,” October 2009. [Online].

[65] U.S. Department of Energy, “21 steps to improve cyber security of SCADA
networks.”

[66] Symantec Security Response, “W32.Disttrack technical details,” 16 August 2012.
[Online]. Available:
http://www.symantec.com/security_response/writeup.jsp?docid=2012-081608-0202-
99&tabid=2. [Accessed 3 March 2014].

[67] M. Sully, “The deconstruction of the Mariposa botnet,” February 2010. [Online].
Available: http://defintel.com/docs/Mariposa_White_Paper.pdf [Accessed 28 April
2014].

 81

[68] M. Russinovich, “Analyzing a Stuxnet infection with the Sysinternals tools,” 30
March 2011. [Online]. Available:
http://blogs.technet.com/b/markrussinovich/archive/2011/03/30/3416253.aspx.

[69] K. Poulsen, “Slammer worm crashed Ohio nuke plant network,” SecurityFocus, 19
August 2003. [Online]. Available: http://www.securityfocus.com/news/6767.
[Accessed 28 May 2014].

[70] Microsoft Corporation, “SetPriority method of the Win32_Process class,” [Online].
Available: http://msdn.microsoft.com/en-us/library/aa393587(v=vs.85).aspx.
[Accessed 20 May 2014].

[71] G. Williams, “Windows Management Instrumentation (WMI) support page,”
Williams Technology Consulting Services, 12 July 2001. [Online]. Available:
http://www.wtcs.org/snmp4tpc/wmi.htm. [Accessed 29 May 2014].

[72] R. Van der Woude, “Reading NT’s registry with reg.exe,” Rob van der Woude’s
Scripting, 4 March 2011. [Online]. Available:
http://www.robvanderwoude.com/ntregistry.php. [Accessed 29 May 2014].

[73] National Institute of Standards and Technology (NIST), “National cyber awareness
system - Vulnerability summary for CVE-2008-2005,” DHS U.S.-CERT National
Vulnerability Database, 6 May 2008. [Online]. Available:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=2008-2005. [Accessed 27 May
2014].

[74] L. Rist, “Introducing Conpot,” The Honeynet Project, 11 May 2013. [Online].
Available: https://www.honeynet.org/node/1047. [Accessed 29 May 2014].

[75] V. Paxon, “Bro: a system for detecting network intruders in real-time,” in
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

